

Fakulteten för ekonomi, kommunikation och IT

Criticise
Software Engineering

Criticise for Niclas Kihlstadius

Date: 2006-10-20
Name: Henrik Bäck
Course: DAVC19
Instructor: Tim Heyer
 Robin Staxhammar

Criticise for Niclas Kihlstadius Fakultet 1 2006-10-20
Henrik Bäck Computer Science DAVC19

Page 2 of 5

Table of contents
Table of contents .. 2
Up-to-date documentation has it’s downsides ... 3
Reuse of documentation ... 3
Newcomers ... 3
Up-to-date - take time ... 3

References.. 4

Criticise for Niclas Kihlstadius Fakultet 1 2006-10-20
Henrik Bäck Computer Science DAVC19

Page 3 of 5

Up-to-date documentation has it’s downsides
In his report Niclas writes about always have complete and up-to-date documentation.
But is it only a good idea to make all these documents? In this response, Niclas
arguments will be put in another perspective.

Reuse of documentation
Niclas writes that reuse of software documentation is good and could be time and
money saving. Always when reusing documentation from other projects the risk of
errors in the software increases. As described in [5] errors occur in programs due to
copy-and-paste of code. As well ass errors in program code can be reproduced by copy-
and-paste so can errors in design documents be when these are copy-and-pasted. To
copy and paste design documents may be good but can lead to problems.

Newcomers
Niclas also writes that design documentations are needed for newcomers to get an
overview of the system. Indeed [1] writes that it is enough with an informative
workspace where all project members can access information. In [2] the author says
that “A large wallboard located in a public area promoted group interaction around the
board, it enabled collaborative problem solving, as well as informing individuals about
the local and global progress of the project”. This makes it easy for a newcomer to
under stand the project but also gives project stakeholders a quick and easy overview
for the projects status.

Up-to-date documentation takes time
Niclas states that it is important to keep the documents up-to-date. This, according to
him, because otherwise it will be hard to maintain the software. Furthermore he states
that it is much easier to understand a higher level of concepts and that software
documentation represent that.

The fact is that it is very hard to keep documentation up-to-date at all time. Often is the
time and effort put into writing and updating the documentation not motivation
enough for members to do a good job. This will result in a bad documentation or a
documentation that is not up-to-date at all time. In [3] it is stated that unit tests
complemented with descriptive comments can be used as a full documentation in
software. This is easier for team members to do and unit tests also help the software to
perform correct.[1] also states that the making of software documentation not only
displease the writers of it but even the costumer, because the customer only pays for
the software itself.

In addition existing software and tests can be used to create software documentation
when it is needed. This is very helpful for team members and as shown in [4] there are
ways to do this. When writing software documentation one little single type-error can
become a big issue and that can make the whole documentation unusable. It is
therefore better to use descriptive comments and tests as documentation.

Criticise for Niclas Kihlstadius Fakultet 1 2006-10-20
Henrik Bäck Computer Science DAVC19

Page 4 of 5

References
[1] Extreme Programming Explained, Embrace Change
 KENT BECK, CYNTHIA ANDERS
 ISBN: 0-321-27865-8

[2] Back to the future: pen and paper technology supports complex group coordination
 Whittaker, Steve (Lotus Development Corp); Schwarz, Heinrich Source:
 Conference on Human Factors in Computing Systems - Proceedings, v 1, 1995, p
 495-502
 CODEN: 002163
 Conference: Proceedings of the Conference on Human Factors in Computing
 Systems. Part 1 (of 2), May 7-11 1995, Denver, CO, USA Sponsor: ACM
 Publisher: ACM

 Abstract: Despite a wealth of electronic group tools for co-ordinating the software
 development process, instead we find many groups choosing apparently outmoded
 'material' tools in critical projects. To understand the limitations of current
 electronic tools, we studied two groups, contrasting the effectiveness of both kinds
 of tools. We show that the size, public location and physical qualities of material
 tools engender certain crucial group processes that current on-line technologies fail
 to support. A large wallboard located in a public area promoted group interaction
 around the board, it enabled collaborative problem solving, as well as informing
 individuals about the local and global progress of the project. Furthermore, the
 public nature of the wallboard encouraged greater commitment and updating.
 However, material tools fall short on several other dimensions such as distribution,
 complex dependency tracking, and versioning. We believe that some of the benefits
 of material tools should be incorporated into electronic systems and suggest design
 alternatives that could bring these benefits to electronic systems. (15 refs.)

[3] Streamlining the agile documentation process test-case driven documentation
 demonstration for the XP2006 conference
 Brolund, Daniel (Agical AB); Ohlrogge, Joakim Source: Lecture Notes in
 Computer Science (including subseries Lecture Notes in Artificial Intelligence and
 Lecture Notes in Bioinformatics), v 4044 LNCS, Extreme Programming and
 Agile Processes in Software Engineering - 7th International Conference, XP
 2006, Proceedings, 2006, p 215-216
 ISSN: 0302-9743
 Conference: 7th International Conference on Extreme Programming and Agile
 Processes in Software Engineering, XP 2006, Jun 17-22 2006, Oulu, Finland
 Sponsor: Exoftware;Philips
 Publisher: Springer Verlag

 Abstract: In far too many software projects the value of the documentation
 delivered is not high enough to motivate the effort spent to write it. An outdated
 document can be as misleading as a good, up to date one can be helpful. This
 demonstration will show how unit tests complemented with descriptive
 comments can be used to generate documentation that is constantly up to date. Its
 demonstrated by example how both the static and dynamic features of a
 software system can be salvaged with very little effort to be presented to a bigger

Criticise for Niclas Kihlstadius Fakultet 1 2006-10-20
Henrik Bäck Computer Science DAVC19

Page 5 of 5

 audience as relevant, readable documentation. © Springer-Verlag Berlin
 Heidelberg 2006. (2 refs.)

[4] Design documentation retrofitting: an approach for retrieving reusable code
 Loy, P.H. (Whiting Sch. of Eng., Johns Hopkins Univ., Baltimore, MD, USA)
 Source: Fifth Annual Pacific Northwest Software Quality Conference, 1987, 156-73
 Conference: Fifth Annual Pacific Northwest Software Quality Conference, 19-20
 Oct. 1987 , Portland, OR, USA
 Publisher: Lawrence & Craig, Portland, OR, USA

 Abstract: Presents a technique for generating architectural design documentation
 from existing software. This technique has been proven to be effective in assisting
 the software professional in making decisions about the reusability of the code. The
 potential reusability of code is often severely constrained by the quality of existing
 design documentation. In many cases no graphical design documentation is
 available; in other cases the documentation is inadequate to assess the relationships
 between software program modules. To determine whether or not code is reusable,
 design documentation is needed that graphically depicts the program architecture
 showing the relationships between program modules in terms of hierarchy, calling
 sequences, and parameter passing. An approach is presented that enables the
 software professional to start with existing code and retrofit design documentation
 consisting of structure charts and interface details. A case study is discussed in
 detail (10 refs.)

[5] CP-Miner: finding copy-paste and related bugs in large-scale software code
 Li, Z. (Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA); Lu, S.; Myagmar, S.;
 Zhou, Y. Source: IEEE Transactions on Software Engineering, v 32, n 3, March
 2006, 176-92
 ISSN: 0098-5589 CODEN: IESEDJ
 Publisher: IEEE, USA

 Abstract: Recent studies have shown that large software suites contain significant
 amounts of replicated code. It is assumed that some of this replication is due to
 copy-and-paste activity and that a significant proportion of bugs in operating
 systems are due to copy-paste errors. Existing static code analyzers are either not
 scalable to large software suites or do not perform robustly where replicated code is
 modified with insertions and deletions. Furthermore, the existing tools do not
 detect copy-paste related bugs. In this paper, we propose a tool, CP-Miner, that
 uses data mining techniques to efficiently identify copy-pasted code in large
 software suites and detects copy-paste bugs. Specifically, it takes less than 20
 minutes for CP-Miner to identify 190,000 copy-pasted segments in Linux and
 150,000 in FreeBSD. Moreover, CP-Miner has detected many new bugs in popular
 operating systems, 49 in Linux and 31 in FreeBSD, most of which have since been
 confirmed by the corresponding developers and have been rectified in the following
 releases. In addition, we have found some interesting characteristics of copy-paste
 in operating system code. Specifically, we analyze the distribution of copy-pasted
 code by size (number lines of code), granularity (basic blocks and functions), and
 modification within copy-pasted code. We also analyze copy-paste across different
 modules and various software versions (39 refs.)

