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Up-to-date documentation has it’s downsides 
In his report Niclas writes about always have complete and up-to-date documentation. 
But is it only a good idea to make all these documents? In this response, Niclas 
arguments will be put in another perspective. 

Reuse of documentation 
Niclas writes that reuse of software documentation is good and could be time and 
money saving. Always when reusing documentation from other projects the risk of 
errors in the software increases. As described in [5] errors occur in programs due to 
copy-and-paste of code. As well ass errors in program code can be reproduced by copy-
and-paste so can errors in design documents be when these are copy-and-pasted. To 
copy and paste design documents may be good but can lead to problems. 

Newcomers 
Niclas also writes that design documentations are needed for newcomers to get an 
overview of the system. Indeed [1] writes that it is enough with an informative 
workspace where all project members can access information. In [2] the author says 
that “A large wallboard located in a public area promoted group interaction around the 
board, it enabled collaborative problem solving, as well as informing individuals about 
the local and global progress of the project”. This makes it easy for a newcomer to 
under stand the project but also gives project stakeholders a quick and easy overview 
for the projects status. 

Up-to-date documentation takes time 
Niclas states that it is important to keep the documents up-to-date. This, according to 
him, because otherwise it will be hard to maintain the software. Furthermore he states 
that it is much easier to understand a higher level of concepts and that software 
documentation represent that. 
 
The fact is that it is very hard to keep documentation up-to-date at all time. Often is the 
time and effort put into writing and updating the documentation not motivation 
enough for members to do a good job. This will result in a bad documentation or a 
documentation that is not up-to-date at all time. In [3] it is stated that unit tests 
complemented with descriptive comments can be used as a full documentation in 
software. This is easier for team members to do and unit tests also help the software to 
perform correct.[1] also states that the making of software documentation not only 
displease the writers of it but even the costumer, because the customer only pays for 
the software itself. 
  
In addition existing software and tests can be used to create software documentation 
when it is needed. This is very helpful for team members and as shown in [4] there are 
ways to do this. When writing software documentation one little single type-error can 
become a big issue and that can make the whole documentation unusable. It is 
therefore better to use descriptive comments and tests as documentation. 
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