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Partitioned Optical Passive Stars 
(POPS) network

• An optical interconnection 
network for a 
multiprocessor system

• Uses multiple optical 
passive star (OPS) 
couplers

• Can simulate SIMD 
hypercubes

made by w:user:JasonHise
http://en.wikipedia.org/wiki/Hypercube



  

Terminology
• POPS(d, g)

– d, number of processors in 
a group

– g, number of groups
• g2 couplers are needed
• For coupler c(i, j), j is the 

source processor group, i 
is the destination 
processor group

• A slot is the time for a 
coupler to send and 
receive data

POPS(5, 2) network



  

Theorems
• Theorem 1. An n processor POPS(d,g) can simulate 

every move of an n processor SIMD hypercube 
using one slot when d = 1 and using 2[d/g] slots 
when d > 1.

• Bitonic sorting algorithm O(2[d/g] log2n) on a 
hypercube

• A fast algorithm for merging and sorting sequences



  

Merging Using a POPS network
• Two sorted sequences A (a1, a2, …, ak) and B (b1, 

b2, …, bk) of length K

• One element per processor, dg = 2K

• rank(bi : A U B) = rank(bi : B) + rank(bi : A)

• Two phase binary search



  

First phase

• Starts with the last 
element in the middle 
group

• 2 subproblems
• Complexity: 2*(log g)
• Second phase – 

depends on g and d



  

Second phase (g ≥ d)
• Gi, 1 ≤ i ≤ K/d ; Gi,j 1 ≤ j ≤ d
• We know rank(Gk,d : A) & rank(Gk+1,d : A)
• We start with Gk+1,d/2

• Broadcast boundaries to Gk+1,d/2 (2 slots)
• We get rank(Gk+1,d/2 : A) by another 2 slots
• 2 subproblems, which can be done simultaneously
• Complexity: 4*(log d)



  

Second phase (g < d)
• Previous approach 

doesn’t work
• Divide each group into 

subgroups
• Rank the first element 

of each subgroup 
(2logg slots)

• Sequential ranking of 
the remaining elements 
(4d/g slots)



  

Conclusion for merge
• Lemma 1. Two sorted sequences of length K each 

can be merged into a single sorted sequence on a 
POPS(d,g), K = dg with the following complexities:
– In 2logg + 8logd + 1 slots if g ≥ d
– In 6logg + 9d/g slots if g < d



  

Sorting
• Based on the merge-sort algorithm

• n numbers to be sorted using a POPS(d,g) network 
where dg = n

• Couple restrictions

• Previous merge algorithm

• Sort elements in each group – depends on n and d



  

Case 1 (d ≤ √n)
• We begin with d = g = √n

– g2 couplers, hence g couplers for each group and 
we have one coupler for every d

• Gi, 1 ≤ i ≤ g ; Gi,j 1 ≤ j ≤ d

• Two sequences, P and Q, with k elements each (1 ≤ 
2k ≤ d)



  

Case 1 (d ≤ √n) contd.
• rank(P : Q) 

• Start: rank(Pk/2 : Q) where Gi,j holds Pk/2 

• Elements of Q in the processors Gi,r ,.., Gi,s

• Gi,j -> c(j, i) -> Gj,i -> c(i, j) -> Gi,k , k = r...s

• We now have 2 subproblems! Takes 4logk slots



  

Case 1 (d ≤ √n) conclusion
• Pairwise merging adjacent elements

– 2 -> 4 ->8 etc ..

• Logd stages at each stage that requires 8logd + 1 
slots

• 8log2d + logd slots

• Works for when d < √n as well



  

Case 2 (d > √n)
• Less couplers connected to each group then 

processors

• Divide each group into g subgroups denoting them 
K1, K2, ..., Kg 

• For each group:
– Send out Ki to Gi 
– Gives us POPS(d/g, g) ->  theorem 2

• 2d + 2d/g * logd slots



  

Case 2 (d > √n) - improvements
• We simulate the algorithm on each group  without 

distributing the elements

• When sorting the elements for G1:
– Take the first subgroup from each group and 

simulate the hypercube algorithm 
– Place result in G1 in sorted order

•  d + 2d/g * logd slots



  

Case 2 (d > √n) – further 
improvements

• After we finish sorting a group we don't move the 
elements into G1 but keep them in their original 
groups

• After g rounds of sorting:
– Subgroup1 in every group is destined for G1, 

subgroup 2 in every group is destined for G2 etc
– Every group has g couples so we transfer g 

elements in parallel from each group.

•  d/g + 2d/g * logd slots



  

Sorting within groups – Conclusion 

• Elements in each group in a POPS(d,g) can be 
sorted within the following complexities:
– In 8log2d + logd slots if g ≥ d
– In d/g + 2d/g * logd slots if g < d



  

Sorting – conclusion 
• First we sort the elements in each group

• Then we pairwise merge groups using the algorithm 
described earlier logd times

• Complexity is thus:
– 8logn + 8log2d + 2log2g + logd + logg slots if g ≥ √n
– 2d/g * logn + 7d/g * logg + d/g + 6log2g slots if g < 

√n



  

Conclusion
• One algorithm for sorting and one for merging on a 

POPS network

• More efficient when compared to simulated 
hypercube algorithm when d > g


