

Fast Merging and Sorting on a
Partitioned Optical Passive Stars

Network
Amitava Datta and Subbiah

Soundaralakshmi

Anders Ellvin and Tobias Pulls

Partitioned Optical Passive Stars
(POPS) network

• An optical interconnection
network for a
multiprocessor system

• Uses multiple optical
passive star (OPS)
couplers

• Can simulate SIMD
hypercubes

made by w:user:JasonHise
http://en.wikipedia.org/wiki/Hypercube

Terminology
• POPS(d, g)

– d, number of processors in
a group

– g, number of groups
• g2 couplers are needed
• For coupler c(i, j), j is the

source processor group, i
is the destination
processor group

• A slot is the time for a
coupler to send and
receive data

POPS(5, 2) network

Theorems
• Theorem 1. An n processor POPS(d,g) can simulate

every move of an n processor SIMD hypercube
using one slot when d = 1 and using 2[d/g] slots
when d > 1.

• Bitonic sorting algorithm O(2[d/g] log2n) on a
hypercube

• A fast algorithm for merging and sorting sequences

Merging Using a POPS network
• Two sorted sequences A (a1, a2, …, ak) and B (b1,

b2, …, bk) of length K

• One element per processor, dg = 2K

• rank(bi : A U B) = rank(bi : B) + rank(bi : A)

• Two phase binary search

First phase

• Starts with the last
element in the middle
group

• 2 subproblems
• Complexity: 2*(log g)
• Second phase –

depends on g and d

Second phase (g ≥ d)
• Gi, 1 ≤ i ≤ K/d ; Gi,j 1 ≤ j ≤ d
• We know rank(Gk,d : A) & rank(Gk+1,d : A)
• We start with Gk+1,d/2

• Broadcast boundaries to Gk+1,d/2 (2 slots)
• We get rank(Gk+1,d/2 : A) by another 2 slots
• 2 subproblems, which can be done simultaneously
• Complexity: 4*(log d)

Second phase (g < d)
• Previous approach

doesn’t work
• Divide each group into

subgroups
• Rank the first element

of each subgroup
(2logg slots)

• Sequential ranking of
the remaining elements
(4d/g slots)

Conclusion for merge
• Lemma 1. Two sorted sequences of length K each

can be merged into a single sorted sequence on a
POPS(d,g), K = dg with the following complexities:
– In 2logg + 8logd + 1 slots if g ≥ d
– In 6logg + 9d/g slots if g < d

Sorting
• Based on the merge-sort algorithm

• n numbers to be sorted using a POPS(d,g) network
where dg = n

• Couple restrictions

• Previous merge algorithm

• Sort elements in each group – depends on n and d

Case 1 (d ≤ √n)
• We begin with d = g = √n

– g2 couplers, hence g couplers for each group and
we have one coupler for every d

• Gi, 1 ≤ i ≤ g ; Gi,j 1 ≤ j ≤ d

• Two sequences, P and Q, with k elements each (1 ≤
2k ≤ d)

Case 1 (d ≤ √n) contd.
• rank(P : Q)

• Start: rank(Pk/2 : Q) where Gi,j holds Pk/2

• Elements of Q in the processors Gi,r ,.., Gi,s

• Gi,j -> c(j, i) -> Gj,i -> c(i, j) -> Gi,k , k = r...s

• We now have 2 subproblems! Takes 4logk slots

Case 1 (d ≤ √n) conclusion
• Pairwise merging adjacent elements

– 2 -> 4 ->8 etc ..

• Logd stages at each stage that requires 8logd + 1
slots

• 8log2d + logd slots

• Works for when d < √n as well

Case 2 (d > √n)
• Less couplers connected to each group then

processors

• Divide each group into g subgroups denoting them
K1, K2, ..., Kg

• For each group:
– Send out Ki to Gi
– Gives us POPS(d/g, g) -> theorem 2

• 2d + 2d/g * logd slots

Case 2 (d > √n) - improvements
• We simulate the algorithm on each group without

distributing the elements

• When sorting the elements for G1:
– Take the first subgroup from each group and

simulate the hypercube algorithm
– Place result in G1 in sorted order

• d + 2d/g * logd slots

Case 2 (d > √n) – further
improvements

• After we finish sorting a group we don't move the
elements into G1 but keep them in their original
groups

• After g rounds of sorting:
– Subgroup1 in every group is destined for G1,

subgroup 2 in every group is destined for G2 etc
– Every group has g couples so we transfer g

elements in parallel from each group.

• d/g + 2d/g * logd slots

Sorting within groups – Conclusion

• Elements in each group in a POPS(d,g) can be
sorted within the following complexities:
– In 8log2d + logd slots if g ≥ d
– In d/g + 2d/g * logd slots if g < d

Sorting – conclusion
• First we sort the elements in each group

• Then we pairwise merge groups using the algorithm
described earlier logd times

• Complexity is thus:
– 8logn + 8log2d + 2log2g + logd + logg slots if g ≥ √n
– 2d/g * logn + 7d/g * logg + d/g + 6log2g slots if g <

√n

Conclusion
• One algorithm for sorting and one for merging on a

POPS network

• More efficient when compared to simulated
hypercube algorithm when d > g

