Fast Merging and Sorting on a Partitioned Optical Passive Stars Network

Amitava Datta and Subbiah Soundaralakshmi

Anders Ellvin and Tobias Pulls

Partitioned Optical Passive Stars (POPS) network

- An optical interconnection network for a multiprocessor system
- Uses multiple optical passive star (OPS) couplers
- Can simulate SIMD hypercubes

made by w:user:JasonHise http://en.wikipedia.org/wiki/Hypercube

Terminology

- POPS(d, g)
 - d, number of processors in a group
 - g, number of groups
- g² couplers are needed
- For coupler c(i, j), j is the source processor group, i is the destination processor group
- A slot is the time for a coupler to send and receive data

POPS(5, 2) network

Theorems

- Theorem 1. An n processor POPS(d,g) can simulate every move of an n processor SIMD hypercube using one slot when d = 1 and using 2[d/g] slots when d > 1.
- Bitonic sorting algorithm O(2[d/g] log²n) on a hypercube
- A fast algorithm for merging and sorting sequences

Merging Using a POPS network

- Two sorted sequences A (a_1 , a_2 , ..., a_k) and B (b_1 , b_2 , ..., b_k) of length K
- One element per processor, dg = 2K
- $rank(b_i : A \cup B) = rank(b_i : B) + rank(b_i : A)$
- Two phase binary search

First phase

- Starts with the last element in the middle group
- 2 subproblems
- Complexity: 2*(log g)
- Second phase depends on g and d

Second phase ($g \ge d$)

- G_{i} , $1 \le i \le K/d$; $G_{i,j}$ $1 \le j \le d$
- We know rank($G_{k,d}$: A) & rank(G_{k+1} , d: A)
- We start with $G_{k+1,d/2}$
- Broadcast boundaries to $G_{k+1,d/2}$ (2 slots)
- We get rank($G_{k+1,d/2}$: A) by another 2 slots
- 2 subproblems, which can be done simultaneously
- Complexity: 4*(log d)

Second phase (g < d)

- Previous approach doesn't work
- Divide each group into subgroups
- Rank the first element of each subgroup (2logg slots)
- Sequential ranking of the remaining elements (4d/g slots)

Conclusion for merge

- Lemma 1. Two sorted sequences of length K each can be merged into a single sorted sequence on a POPS(d,g), K = dg with the following complexities:
 - In 2logg + 8logd + 1 slots if $g \ge d$
 - $\ln 6\log g + 9d/g \text{ slots if } g < d$

Sorting

- Based on the merge-sort algorithm
- n numbers to be sorted using a POPS(d,g) network where dg = n
- Couple restrictions
- Previous merge algorithm
- Sort elements in each group depends on n and d

Case 1 (d $\leq \sqrt{n}$)

- We begin with $d = g = \sqrt{n}$
 - g² couplers, hence g couplers for each group and we have one coupler for every d
- G_{i} , $1 \le i \le g$; $G_{i,j}$, $1 \le j \le d$
- Two sequences, P and Q, with k elements each (1 ≤ 2k ≤ d)

Case 1 (d $\leq \sqrt{n}$) contd.

- rank(P : Q)
- Start: rank($P_{k/2}$: Q) where $G_{i,j}$ holds $P_{k/2}$
- Elements of Q in the processors G_{i,r},.., G_{i,s}
- $G_{i,j} \rightarrow c(j, i) \rightarrow G_{j,i} \rightarrow c(i, j) \rightarrow G_{i,k}$, k = r...s
- We now have 2 subproblems! Takes 4logk slots

Case 1 (d $\leq \sqrt{n}$) conclusion

- Pairwise merging adjacent elements
 -2 -> 4 ->8 etc...
- Logd stages at each stage that requires 8logd + 1 slots
- 8log²d + logd slots
- Works for when d < \sqrt{n} as well

Case 2 (d > \sqrt{n})

- Less couplers connected to each group then processors
- Divide each group into g subgroups denoting them $K_1, K_2, ..., K_g$
- For each group:
 - Send out K_i to G_i
 - Gives us POPS(d/g, g) -> theorem 2
- 2d + 2d/g * logd slots

Case 2 (d > \sqrt{n}) - improvements

- We simulate the algorithm on each group without distributing the elements
- When sorting the elements for G_1 :
 - Take the first subgroup from each group and simulate the hypercube algorithm
 - Place result in G_1 in sorted order
- d + 2d/g * logd slots

Case 2 (d > \sqrt{n}) – further improvements

- After we finish sorting a group we don't move the elements into G₁ but keep them in their original groups
- After g rounds of sorting:
 - Subgroup1 in every group is destined for G1, subgroup 2 in every group is destined for G2 etc
 - Every group has g couples so we transfer g elements in parallel from each group.
- d/g + 2d/g * logd slots

Sorting within groups – Conclusion

- Elements in each group in a POPS(d,g) can be sorted within the following complexities:
 - In 8log²d + logd slots if $g \ge d$
 - $\ln d/g + 2d/g * \log d$ slots if g < d

Sorting – conclusion

- First we sort the elements in each group
- Then we pairwise merge groups using the algorithm described earlier logd times
- Complexity is thus:
 - 8logn + 8log²d + 2log²g + logd + logg slots if g ≥ \sqrt{n}
 - 2d/g * logn + 7d/g * logg + d/g + 6log²g slots if g < \sqrt{n}

Conclusion

- One algorithm for sorting and one for merging on a POPS network
- More efficient when compared to simulated hypercube algorithm when d > g