
Systematic Development of 
Complex Web-based User 

Interfaces

Rikard Boström
Anders Ellvin



Introduction
• Web apps failing in achieving basic SE-stds
• Increasing complexity causing concern about 

quality
• The UI largely affects the effectiveness and 

maintainability
• Article addresses systematic development of 

Web-UIs
• A SE-based approach



Presentation overview

• Modelling User Interface Requirements
– Functional requirements
– Complementing requirements.

• DIWA
• DAWID



Modelling User Interface 
Requirements

• Functional requirements
• Fundamental characteristics of UI like 

static structure, dynamic behavior etc



Functional requirements

• Actors
• Use Cases
• Activity Graphs
• Domain class model



Use Case diagram



Activity graph elements



Activity Graph Example



Domain Class Model



User Interface Elements



Example



UI Structure and Navigation

• UI:s are decomposed into building blocks 
(windows, web pages)

• Windows and web pages can in turn be 
divided into e.g. panels or table cells

• Building blocks are composed from 
scenes in a three step process



Three step process

• Merge related ”atomic scenes” to 
”superscenes” in an iterative process

• Compose superscenes to windows 
(internal window structure)

• Arrange windows according to a 
hierarchical structure (external windows 
structure)



Possible draft of the internal 
structure of the main window



External window structure



DIWA

• Framework for the development of high 
quality GUIs

• Based on the fundamental Software 
Engineering (SE) principles



SE-principles

• Hierarchical structure – decomposition 
into smaller components

• Homogenous components – same 
structure and treatment for all components



SE-principles

• Separation of concern – Responsibilities 
of a component cohesive and separated 
from other components

• Acyclic communication – Acyclic use 
dependencies



The DIWA-approach

• Provides a logical separation of the UI 
from the functional core of the application

• Decomposition of the UI into user interface 
objects (UIOs)

• Both simple and complex (composite) 
components are treaded as UIOs



The User Interface Object (UIO)

• Encapsulates 3 associated parts
– Dialog behavior (Dialog Control)
– Screen layout (Presentation)
– Accessing the functional core (Application 

Interface)
• The 3 parts complies with the SE-

principles separation of concern and 
acyclic communication



Dialog Control (DC)

• Serves as the interface of the UIO
• Retrieves events and performs the 

appropriate actions
– Send the event to the Presentation
– Calls an application function via the 

Application Interface
– Passing it to a subsequent UIO



Presentation (P) and Application 
Interface (AI)

• Presentation – Responsible for drawing 
the UI

• Application Interface – Provides access to 
the application functions and data



A DIWA UIO



Mail Tool Example



Web-Based User Interfaces

• A Web-UI is divided into a client tier and a 
server tier
– Clients browser responsible for displaying 

Web documents and communication between 
client and server

– Server comprises of two parts
• Web server provides Web documents
• The Servlet retrieves dynamic content from the 

application



DAWID

• DIWA-based Web User Interface 
Development

• Refines DIWA for the Web environment
• Uses a Web-UIO much like the DIWA-UIO
• The DAWID-UIO uses a Web-Presentation 

instead of the original Presentation 
component



DAWID architecture



Collaboration of the DAWID 
components



Summary

• A Software Engineering-based approach 
for developing complex Web-based User 
Interfaces

• Two steps
– Gather and model requirements
– Map requirements into Web-UI software 

architecture
• The DAWID framework is proposed for the 

second step


