
Single and Bulk Updates
in Stratified Trees

Eljas Soisalon-Soininen and Peter Widmayer

Search trees

• Important part of IT

• Fast web & database searches

• Rebalancing

• Logarithmical access cost

Relaxed rebalancing

• Concurrent systems

• Problem during link changes

• Locked nodes

• Cache misses & Disk accesses

• Rebalancing occurs when there is time

• Updates may cancel each other

Stratified Trees

• One class of stratified trees

• Ottman & Wood

• Rebalancing with constant linkage cost

• Basically consists of:

• Component trees

• Layers

Component trees

Stratified Tree

Insertion in Stratified Trees

1 3 4 5 6

2

Insertion in Stratified Trees

1 3 4 5 6

2

Insertion in Stratified Trees

1

3 4 5 6

2

Insertion in Stratified Trees

1

3 4 5 6

2

Insertion in Stratified Trees

1

3 4 5 6

2

Insertion in Stratified Trees

1 3 4 5 62

Insertion in Stratified Trees

1 3 4 5 62

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 1

Deletion Case 2

Deletion Case 2

Deletion Case 2

Deletion Case 2

Deletion Case 2

Deletion Case 2

Deletion Case 2

Deletion Case 2

Bulk Insertion

• Insertion of an entire set of keys

• Two phases

• Bulk tree construction

• Bulk tree insertion

Bulk

Bulk between two adjacent keys

Bulk tree construction

• Constructed according to predefined rules

• Shape chosen to ease insertion

284 Eljas Soisalon-Soininen and Peter Widmayer

3-component root

(2,4,2)

(2,4,...,4,2)

Figure 8. The general shape of a bulk tree.

2-component, from left to right. In addition to these requirements on the boundary, we

allow at most a constant number of 2-components and 4-components on each layer of a

bulk tree, with the possible exception of the first six layers where the in-between com-

ponents are allowed to be arbitrary. The question is now whether this limited class of

stratified trees allows for an arbitrary number of leaves, for a sufficiently large number.

To make things simpler, let us limit the freedom in choosing the degree of components

to the four nodes that are children of the 4-components adjacent to the boundary, for

each layer. All other components must be 3-components. This immediately implies that

below a layer of z components, for any z≥ 12, the next layer must have between 3z−8

and 3z+ 8 components. Hence it is sufficient to allow for an “initial" set of bulk trees

whose numbers of leaves span an interval from k to at least 3k− 7, for some value k,

since the next higher values of 3k− 8 and more can be achieved on the next layer of

the tree, and therefore all numbers of leaves will be achievable. For this initial set of

bulk trees, an easy calculation shows that under the given conditions, the number of

nodes on the successive layers (starting with the root node) is 1, 3, 8, 20..28, 44..108,

and 92..428, where i.. j denotes any value in the interval from i to j, depending on the

choice of components’ degrees. The last of these intervals is the first in the sequence

that fits our needs, and hence all numbers of leaves from 92 up can be realized accord-

ing to our strict rule. Altogether, all numbers of leaves from 44 up can be realized, since

44..108 overlaps 92..428, and smaller numbers are treated separately at constant cost.

The result of the construction can be expressed in the following Lemma.

Lemma 3. For a given bulk of m keys in sorted order, a bulk tree of height O(logm)
can be constructed in time O(m).

3.2 Bulk Tree Insertion

The bulk tree insertion progresses in layers, from bottom to top. The root layers of the

given tree T or the bulk tree B will be treated differently and described in a moment.

First, we will focus on intermediate (non-root) layers. The bottom layers of B and T are

aligned so as to be the same. Starting with both bottom layers (i.e., the layers that yield

the new bottom layer), within a layer the left and right boundary component trees of B

are considered in connection with their adjacent components of T . If B does not cut a

link of T , the insertion at the current layer is complete, and the process continues on the

next layer up (see Fig. 9).

Bulk tree insertion

• Start at the bottom, i.e.. at the leaves

• Processes one layer at a time

• Links may be cut and new ones created

• The root layer is treated differently

Cut positions

Single and Bulk Updates in Stratified Trees: An Amortized and Worst-Case Analysis 285

.}

!"#$%&'((%#)*('

Figure 9. Bulk tree insertion: no cut.

If, however, the bulk tree layer cuts a link (or maybe more than one), pointer changes

become necessary to preserve the search tree property. Fig. 10 illustrates by means of

dashed vertical lines the possible positions in which a component of T can be cut.

Figure 10. Possible cut positions in components.

Positions that are marked with an arrow indicate that not just one, but two links

are cut. In these cases, a local pointer change as indicated in Fig. 11 will lead to the

situation that only one link within a component layer needs to be taken care of: It is

a dangling link and can be viewed as one (low) half of a cut link, with the other half

non-existent.

Figure 11. Two cuts lead to one dangling link.

Cut links

• A cut creates at least two dangling links

• Two types of dangling links

• Low Half Links

• High Half Links

286 Eljas Soisalon-Soininen and Peter Widmayer

Let us now look at a cut in an intermediate layer in detail, and then consider the

situation at a root layer where the bulk insertion will terminate. The subsequent obser-

vations, as exposed in Lemmas 5 and 6, will prove the following Lemma:

Lemma 4. For the insertion of a bulk tree of m keys into a given stratified tree of n

keys, at most a constant number of pointer changes is necessary for each layer that is

present in both trees, and hence the total number of pointer changes is bounded from

above in the worst case by O(min{logm, logn}).

Cuts in Intermediate Layers

In an intermediate layer, i.e. neither the root layer of T nor of B (see Fig. 10 with

the modification of Fig. 11), we are left with one cut link per component, either with

both halves present or the low half only. The low half of a link may lead directly to the

next layer down (or a leaf), or it may lead to a single node on the current layer with two

links down (see Fig. 12).

current
layer

Figure 12. Two low and high half-links.

Similarly, the high half of a link can be viewed as coming from the next layer up or

from a single node on the current layer (again, see Fig. 12). It can be seen from Fig. 10

and Fig. 11 that this covers all cases. Not surprisingly, we constructed B in such a way

that these cases can easily be taken care of. We describe this separately for low half

links and high half links.

LowHalf Links A low half link, leading either to no node on the current layer or to one

node, can be simply attached to the boundary 2-component of B, as shown in Fig. 13

for the left boundary of B, with a constant number of pointer changes.

}

!"#$%&'()*+,-
'#%!

.($%!/)0
$'%"

}

!"#$%&'()*+,-
'#%!

.($%!/)0
$'%"

Figure 13. Attach cut link at B’s boundary.

Low Half Links Case 1

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 1

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 1

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 1

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 1

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 2

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 2

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 2

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 2

Left boundary
of bulk

Cut link
to tree

Low Half Links Case 2

Left boundary
of bulk

Cut link
to tree

High Half Links Case 1

Right boundary
of bulk

Cut link
from tree

High Half Links Case 1

Right boundary
of bulk

Cut link
from tree

High Half Links Case 1

Right boundary
of bulk

Cut link
from tree

High Half Links Case 1

Right boundary
of bulk

Cut link
from tree

High Half Links Case 1

Right boundary
of bulk

Cut link
from tree

High Half Links Case 2

Right boundary
of bulk

Cut link
from tree

High Half Links Case 2

Right boundary
of bulk

Cut link
from tree

High Half Links Case 2

Right boundary
of bulk

Cut link
from tree

High Half Links Case 2

Right boundary
of bulk

Cut link
from tree

High Half Links Case 2

Right boundary
of bulk

Cut link
from tree

Root Layer

• Treated differently

• Two cases

The root of the tree is lower
The root of the bulk tree is at a higher level

than the root of the search tree

Boundary
of bulk

Root of
tree

The root of the tree is lower
The root of the bulk tree is at a higher level

than the root of the search tree

Boundary
of bulk

Root of
tree

The root of the tree is lower
The root of the bulk tree is at a higher level

than the root of the search tree

Boundary
of bulk

Root of
tree

The root of the tree is lower
The root of the bulk tree is at a higher level

than the root of the search tree

Boundary
of bulk

Root of
tree

The root of the tree is lower
The root of the bulk tree is at a higher level

than the root of the search tree

Boundary
of bulk

Root of
tree

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 1

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 1

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 1

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

The root of the tree is not lower
The root of the bulk tree is at a lower or

equal level than the root of the search tree

Root of bulk

Case 2

Conclusion

• Bulk insertion Complexity Analysis

• Bulk linkage cost is O(log m)

• Bulk insertions together with singleton
insertions and deletions, the amortized
cost is O(log m)

