
Faculty of Economics Sciences, Communication and IT
Department of Computer Science

Erik Andersson Emil Ljungdahl

Design of an autonomic system for
IP-network environments

Degree Project of 30 credit points
Master of Science in Information Technology

Date/Term: 2009-01-15
Supervisor: Thijs Holleboom
Examiner: Donald Ross
Serial Number:

Karlstads Universitet 651 88 Karlstad

Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

Design of an autonomic system for IP-network

environments

Erik Andersson Emil Ljungdahl

c© 2009 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Erik Andersson

Emil Ljungdahl

Approved, 2009-01-15

Opponent: Henrik Bäck

Opponent: Mathias Andersson

Advisor: Thijs Holleboom

Examiner: Donald Ross

iii

Abstract

A2B Electronics AB is a company that develops and manufactures products and technology

for digital cable television. A2B’s new EXM-product family translates digital television

channels from multiple source networks into a single destination network. Multiple EXM-

units are connected in a system to provide a custom set of TV channels. To minimize

the administrative effort, the units in a system should be able to interact and collaborate

without manual intervention. The purpose of this thesis is to propose an underlying system

that supports seamless interaction and collaboration between units.

The autonomic system concept has served as a foundation for the proposed solution.

The requirements for the EXM-system proved to be similar to many properties of an auto-

nomic system. The proposed solution was elaborated by answering five reseach questions.

The answers describe how an autonomic system can be implemented with the prerequisites

of the EXM-system. Solutions for service availability, configuration preservation, system

state changes and automatic addressing and communication are provided.

The project has resulted in a proposal of a general autonomic system. The solution

has also been implemented as prototype that runs both in a simulator and on the EXM-

hardware. The simulator was also developed in the scope of this project as a side-effect of

the limited access to EXM-hardware.

The proposed solution together with the prototype can hopefully serve as a base for

projects with prerequisites similar to the project described in this thesis.

v

Acknowledgements

We would like to thank our supervisor Thijs Holleboom for feedback during the writing

of this thesis, for writing advices and for pointing us in the right directions when it was

needed. We would also like to thank Patrik Lantto, which was our supervisor at A2B Elec-

tronics AB, for providing us with an interesting dissertation topic and for the instructive

discussions about software development. Finally, we wouldlike to thank the Lantto family

for their hospitality during the visits to Linköping.

vii

Contents

1 Introduction 1

1.1 Scope of work . 2

1.2 Disposition . 3

2 Background 5

2.1 Digital Video Broadcasting . 5

2.1.1 DVB-MPEG . 5

2.1.2 Transmission techniques . 7

2.2 Autonomic Systems . 7

2.2.1 Properties . 8

2.2.2 Managers and elements . 9

2.3 The EXM-product family . 10

2.3.1 Hardware . 11

2.3.2 Operating System . 12

2.3.3 User Interface . 13

2.4 Summary . 13

3 Problem description 15

3.1 Background . 15

3.2 Thesis questions . 17

ix

3.3 Summary . 18

4 Solution 19

4.1 System addressing and communication . 19

4.1.1 Communication protocol . 20

4.1.2 Messages . 20

4.1.3 Reliable vs. Unreliable communication 21

4.1.4 Conclusion . 22

4.2 Coexistence and addressing in an IP-network 22

4.2.1 Addressing methods . 23

4.2.2 Internal addressing . 23

4.2.3 External addressing . 24

4.3 Detection of system state changes . 27

4.3.1 Periodic messages . 27

4.3.2 Detect changes and monitor current status 28

4.3.3 Intervals & Timeouts . 30

4.4 Availability of services . 31

4.4.1 Description of a service . 31

4.4.2 Requirements . 31

4.4.3 The Bully Algorithm . 34

4.4.4 Multiple services election algorithm 35

4.5 Preservation of element configuration . 39

4.5.1 Information that should be saved 39

4.5.2 Distribution & Storage . 39

4.5.3 Recovery of a failed element . 40

4.5.4 Group identification and logical groups 40

4.6 Summary . 42

x

5 Design and implementation 45

5.1 Autonomic manager design . 45

5.1.1 System knowledge . 46

5.1.2 Internal monitor . 48

5.1.3 Self adjuster . 48

5.1.4 External monitor . 48

5.1.5 System monitor . 49

5.1.6 Heartbeat Manager . 49

5.1.7 Configuration manager . 50

5.1.8 Service election manager . 50

5.2 Design decisions . 50

5.2.1 Object oriented design methods . 50

5.2.2 Process management . 53

5.3 Autonomic manager prototype . 54

5.3.1 Implemented features . 55

5.3.2 Object-oriented design in C . 55

5.3.3 Autonomic Manager API . 56

5.3.4 Network protocol . 56

5.4 Simulator . 57

5.4.1 Functionality . 59

5.4.2 Autonomic manager integration . 59

5.4.3 Configuration of simulator . 59

5.5 Test and verification . 61

5.5.1 Test environment . 61

5.5.2 Verification . 62

5.6 Summary . 63

xi

6 Conclusion 65

6.1 Results . 65

6.2 Discussion . 66

6.3 Future work . 67

6.3.1 Integration into EXM-system . 67

6.3.2 Self-healing . 68

6.3.3 Service discovery . 68

A Requirements 69

A.1 General . 69

A.2 Address assignment . 69

A.3 Topology discovery . 70

A.4 Service assignment . 71

A.5 Service discovery . 72

A.6 System configuration . 73

A.7 Monitoring, logging and notification . 74

Acronyms 75

Bibliography 77

xii

List of Figures

1.1 Project goal . 2

2.1 Program multiplexing . 6

2.2 The structure of an autonomic element. 10

2.3 Re-multiplexing of channels . 11

2.4 Redistribution of transmissions . 12

4.1 Ethernet II frame . 20

4.2 Logical view of autonomic system addressing. 25

4.3 Heartbeat generators and monitors in an autonomic system. 28

4.4 Current vs. desired state . 29

4.5 Missing service assignment . 32

4.6 Detection of conflicting services. 32

4.7 Uneven distribution of services detected. 33

4.8 The Bully algorithm . 34

4.9 Merge of 2 autonomic systems . 41

4.10 Merge of 2 autonomic system with group identification 41

4.11 Proposed solution applied to the EXM-system. 42

5.1 Design overview of an autonomic element. 46

5.2 Use case diagrams describing unit config distribution. 51

5.3 Sequence diagram: unit config receive . 52

xiii

5.4 The class ConfigurationManager. 52

5.5 The autonomic manager protocol and it’s subtypes. 57

5.6 An overview of the testbed environment. 61

xiv

List of Tables

4.1 Multiple services election algorithm . 36

5.1 Code example: Server code for accepting client connections 55

5.2 Code example: OS21 task_create() API in simulator 58

5.3 Simulator config example . 60

xv

Chapter 1

Introduction

The purpose of this thesis, and of the project realized for A2B Electronics AB, is to

propose a solution of an autonomic system that can be applied to A2B’s EXM-product.

A2B develops and manufactures equipment for distribution of digital television in cable,

satellite and terrestrial networks. A2B is located in Motala and has a software development

office in Mjärdevi Science Park in Linköping.

A2B’s new EXM-product family translates digital television channels from multiple

source networks into a single destination network, such as acable TV network in a housing

cooperative. An EXM-system is a collection of EXM-units, where every unit is responsible

for translating a few channels. The units are connected into chains to form complete

transport streams. Every unit is equipped with an Ethernet interface for management and

data distribution.

Since A2B’s target market is small television distributors the initial cost of a system

is important. To avoid unnecessary costs for deployment and administration, A2B has

decided that no additional equipment, except for the EXM-units, should be necessary.

When configuring the EXM-system a user friendly configuration interface should allow a

user to configure all units from the same interface. Such a configuration interface requires

that the unit providing the interface is aware of every other unit in the EXM-system.

1

Mathias Andersson

Mathias Andersson
Vad står EXM för?

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The goal of the project: Apply autonomic system properties to the EXM-system.

By integrating autonomic system properties into the EXM-system the system should

become self aware. The units should, without human intervention, be able to detect,

communicate and cooperate with each other. In figure 1.1 the conversion from a system

with isolated units in (a), to a system with autonomic properties in (b) is described. In (b)

every unit is aware of all other units in the EXM-system. Services, such as the configuration

interface, are global for the whole system.

1.1 Scope of work

In this thesis a solution for the system described in figure 1.1(b) is described. The proposed

solution is described in terms of a generic autonomic system, but is also compliant with

the requirements specified for A2B’s EXM-system. The requirements, which were specified

together with A2B at the beginning of the project, are presented in appendix A. The

solution is based on the answers to five questions which were derived from the requirements

and the definition of an autonomic system.

The work to design and implement a prototype of the proposed solution is also de-

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Referera till 2.2 Autonomic systems

Mathias Andersson
Känns lite konstigt med två "described".

Mathias Andersson
Förtydliga vad som är respektive inte är en service. Exempel webbadministration är en service och tv-kanalerna är inte det. Detta behöver inte nödvändigtvis ske just här, men i alla fall relativt tidigt i uppsatsen.

1.2. DISPOSITION 3

scribed. The prototype is targeted for the EXM-platform and runs both in a simulator

and on the actual EXM-hardware. The creation of the simulator is also described. The pro-

totype was used to verify the functionality of the proposed solution, but it also concretized

the abstract concepts in the solution.

The outcome of the project is a prototype that implements all main aspects of the

proposed solution. The prototype is fully functional, but the firmware for the EXM-

hardware do not have all functionality assumed by the prototype implemented yet, and

thus, only basic functions of the autonomic system are enabled on the EXM-units.

1.2 Disposition

The structure of this thesis is organized as follows. The relevant background information

to the topics discussed in this thesis is presented in chapter 2. The digital broadcasting

standards, the concept of autonomic systems and the EXM-product family are introduced.

In chapter 3, the problem that should be solved is described in detail. The research

questions that serves as a foundation for the solution are also stated.

In chapter 4, a solution to the problem is presented and the answers to the questions

stated in chapter 3 are given.

The design and implementation of a prototype for the proposed solution is described

in chapter 5. The identified autonomic manager components and their relationship are

described along with details about the developed simulator and the autonomic manager

network protocol. The test environment for the prototype is also described.

In chapter 6, the conclusions of the project described in this thesis are given. Important

discoveries and problems are discussed along with suggestions of future work that can be

performed in the context of this project area.

Chapter 2

Background

In this chapter the relevant background information for the project described in this thesis

is given. An introduction to the Digital Video Broadcasting (DVB) standards are provided

as well as a description of the autonomic system concepts. An overview of the EXM-product

family is also presented.

2.1 Digital Video Broadcasting

DVB is a family of standards for digital media broadcasting defined by the DVB Project[1].

The parts of the standards which are necessary for the understanding of this thesis is

described in this section.

2.1.1 DVB-MPEG

In an early stage of the standardization process of the DVB standards[2], MPEG-2 was

selected as the underlying coding standard. The DVB-MPEG standard[3] introduces re-

strictions to the generic MPEG-2 standard to make it more suitable for DVB.

MPEG-2 is standardized in the ISO/IEC 13818 document[4] and contains 7 parts. Part

one[5] is the part which is of interest for this thesis. It defines methods to store and transmit

5

6 CHAPTER 2. BACKGROUND

Figure 2.1: Multiplexing of several programs into a single transport stream in MPEG-2.

streams, where the transmission part is the one of most interest for DVB.

In MPEG-2, elementary streams of video, audio and other data are encoded separately.

For example, a TV channel may consist of one video stream, one audio stream and one data

stream with subtitles. As depicted in figure 2.1, the elementary streams are combined, or

multiplexed, into a single stream called a program which shares a common timebase used

for synchronization at the receiver. Multiple programs can then be multiplexed into a single

transport stream that is to be sent on a physical channel. The number of programs that

fit into a transport stream is dependent on the bitrate of the programs (e.g. resolution)

and the capacity of the channel (see section 2.1.2). Several error correction schemes are

defined for transport over possible lossy medias such as those used for television broadcast.

In daily speak a transport stream is often referred to as a Multiplex (MUX) because of

it’s content, multiplexed streams.

2.2. AUTONOMIC SYSTEMS 7

2.1.2 Transmission techniques

DVB includes standards for a number of different transmission techniques including trans-

mission in satellite, cable, terrestrial, Internet Protocol Television (IPTV) and microwave

networks[1]. Each standard uses the channel coding and modulation scheme best suited

for it’s specific transmission technique. Different levels of error correction are defined for

every standard making the signal more or less resistant to bit errors. The error correction

level together with channel bandwidth defines the capacity (the available bandwidth) for

a channel.

DVB-S and DVB-S2 are the standards for delivery of DVB signals over satellite and are

defined in EN 300 421[6] and EN 302 307[7], respectively. The phase-shift keying algorithms

Quadrature phase-shift keying (QPSK), 8 phase-shift keying (8PSK) and M-ary amplitude

and phase-shift keying (MAPSK) can be used for modulation.

For distribution in cable TV networks the DVB-C standard is used. DVB-C use

Quadrature amplitude modulation (QAM) with 16-256 bits per symbol and is defined

in EN 300 429[8].

The DVB-T/T2 standards are used for distribution in terrestrial networks. DVB-T is

defined in EN 300 744[9] and uses Orthogonal frequency-division multiplexing (OFDM)

together with QPSK or QAM. DVB-T2 is defined in EN 302 755[10] and contains several

enhancements such as increased bit rate.

2.2 Autonomic Systems

Computing systems get more and more complex. Yesterdays computing systems were much

simpler in terms of homogeneity and interconnectivity. The evolution of computing has

created heterogeneous and versatile computing environments where the user experience and

flexibility are at focus. Administration and maintenance of these emerging computer sys-

tems demand highly skilled system administrators. The effort to manage future computing

Mathias Andersson

Mathias Andersson

Mathias Andersson

mathias

mathias

mathias

mathias

Mathias Andersson
Vad är dessa?

Mathias Andersson
Är detta relevant för den fortsatta uppsatsen? Behöver man verkligen veta detta?

8 CHAPTER 2. BACKGROUND

environments might even be too massive for human administrators to handle[11].

In the year 2001, IBM published a manifesto[12] which stated that the increasing soft-

ware complexity makes it hard for the IT industry to progress. To ease the human adminis-

tration effort of complex computing systems the manifesto suggested autonomic computing

- a biological inspired system[13] that is self-managing and operates by using high-level

goals from administrators.

The success of autonomic systems is dependent on contributions from different research

areas including artificial intelligence, network communications and biological studies. One

of the key issues is to reach consensus about how to describe an autonomic system and the

associated properties[14]. Dobson et al. present a survey[15] that cover current research

topics in the area of autonomic systems.

2.2.1 Properties

Self-management has been identified as a key property for autonomic systems[11]. In the

process of self-management the system monitors, adapts and adjusts itself to environmen-

tal changes. Hardware and software component failures are examples of events that trigger

adjustments in the system. To achieve self-management IBM defines four distinct aspects:

self-configuration, self-optimization, self-healing and self-protection. In the following sec-

tions each of these aspects are briefly described.

Self-configuration

Self-configuration is the ability to automatically configure and adapt to new software com-

ponents introduced in the system. High-level policies defined by the administrator specifies

the desired behavior, but not the process to get there.

2.2. AUTONOMIC SYSTEMS 9

Self-optimization

Self-optimization is the ability for software components to automatically tune it’s settings

for optimal performance and efficiency. In order to be able to find appropriate configuration

values the components must monitor the environment and experiment with different values.

Self-healing

A system’s ability to detect, diagnose and repair software and hardware failures is called

self-healing. This can be accomplished by analyzing log files or performing regression

tests. To repair runtime state anomalies, software and firmware upgrades can be fetched

and applied.

Self-protection

A system’s ability to protect itself from malicious attacks and undesired side effects caused

by failures within the system is called self-protection. The system should also take proactive

actions to prevent or minimize damage.

2.2.2 Managers and elements

An autonomic system can be viewed as a collection of connected autonomic elements[11].

Each autonomic element has one or more managed components and an autonomic manager

that controls the behavior of the managed components. The manager is responsible for

handling an element’s internal state and the interaction with other elements. The internal

behavior and the collaboration among the autonomic elements are defined by goals set by

the administrator.

The structure of an autonomic element is illustrated in figure 2.2. The autonomic man-

ager monitors the managed components and the external environment. This information

is passed to the knowledge database which serves as a central information source for all the

10 CHAPTER 2. BACKGROUND

Figure 2.2: The structure of an autonomic element.

components in the manager. If the analyzer detects an undesirable state, an adjustment

plan can be built and executed.

2.3 The EXM-product family

The EXM-product family enables operators to select channels of their own choice and

remultiplex them into their cable TV network as illustrated in figure 2.3. The family is

comprised of four different models. By combining the different models an operator can

receive and redistribute satellite, terrestrial and cable transmissions. Each unit in an

EXM-system receives signals from one transport stream (MUX). One or more channels

in the MUX are selected and forwarded over Asynchronous serial interface (ASI) as raw

MPEG-2 streams. Multiple units are connected in a chain to create a new, self composed

transport stream. The last unit in the chain modulates the transport stream according to

the selected broadcasting technique (Analog, DVB-C or DVB-T).

A general application scenario for an EXM-system is depicted in figure 2.4. The op-

2.3. THE EXM-PRODUCT FAMILY 11

DVB-S

Re-multiplexer
Cable-TV

network
DVB-T

Transport

Stream

Transport

Stream

Transport

Stream

Figure 2.3: Re-multiplexing of channels

erator has chosen to redistribute channels from four different muxes, hence the need of

four EXM-units. MUX1 and MUX2 are received from the terrestrial network and MUX3

and MUX4 from satellite. The first unit in the chain is configured to extract the channels

SVT1 and SVT2 from MUX1. The extracted channels are then transmitted over ASI to

the next unit in the chain. Subsequent units incrementally add channels to the new trans-

port stream which at the last unit contains five channels (SVT1, SVT2, TV3, TV4 and

Kanal5). The output from the last unit is modulated using QAM and sent to the cable

TV network.

The physical structure of an EXM-system with units connected in one or more ASI-

chains can be denoted as the system topology.

2.3.1 Hardware

Every EXM-unit is equipped with a tuner for receiving digital transmissions. The tuner is

the only hardware component that differs between the four EXM-models.

The EXM-unit’s main processor is a multimedia processor from STMicroelectronics,

specialized for digital television processing. It provides a generic 32-bits processor as well

12 CHAPTER 2. BACKGROUND

Figure 2.4: Example of redistribution of satellite and terrestrial transmissions

as functionality for decoding digital signals. The processor core is compatible with the

common instruction set SH-4 found in many embedded devices.

In addition to the chipset from STMicroelectronics the EXM-units are equipped with

a Field-programmable gate array (FPGA) responsible for modulating outgoing signals.

2.3.2 Operating System

The EXM-units use the real time operating system OS21 provided royalty free from STMi-

croelectronics. However, since the processor is SH-4 compatible it should be possible to

use any SH-4 compatible operating system, including Linux, Windows CE and VxWorks.

The OS21 kernel features basic operating system concepts like process priority, IPC

functionality and high resolution timers. The functions are provided as a C API. Since

OS21 does not contain a built in network stack, A2B has included the open source TCP/IP

stack lwIP[16].

2.4. SUMMARY 13

2.3.3 User Interface

An EXM-unit can be configured from a Command Line Interface (CLI) via telnet or from

a web interface. Both the telnet server and the web server are developed by A2B. The

scripting language Lua[17] is used by the servers to communicate with the hardware and

the operating system. Every function that needs to be accessed from a user interface has a

corresponding Lua function implemented in C. A Lua C API is provided as a glue between

Lua and C code.

The Lua API enables development of user interfaces without knowledge of the under-

lying C code. For example, a customer is able to develop his own custom web interface to

suite his special needs.

2.4 Summary

In this chapter the EXM-product family from A2B Electronics AB, which is the target

platform for the project described in this thesis, was introduced. The EXM-units are used

to remultiplex digital television channels into a new distribution network such as a local

cable TV network. The family of standards used for digital television broadcasting is DVB.

A brief overview of DVB as well as the most important sub-standards were described.

The autonomic system concept was also introduced. The concept defines the key

property self-management, which is divided in the four aspects self-configuration, self-

optimization, self-healing and self-protection.

Chapter 3

Problem description

In this chapter the problems that should be solved in the scope of this thesis are described.

A background to the problems is first described, and is followed by the questions that need

to be answered to solve the problems.

3.1 Background

All EXM-units in an EXM-system are connected to a managing IP-network. At the moment

each unit is configured individually through a web interface and is addressed with a static

IP-address. An EXM-system may consist of several 10th of units. Connecting to each of

these units for configuration is complex and time consuming.

One problem for the administrator is to keep track of the static IP-address each device is

assigned. The administrator also needs to keep track of a unit’s placement in an ASI-chain,

since the configuration depends on the position. For example, as depicted in figure 2.4, only

the last unit in the ASI-chain should output the new MUX as DVB-C. The administrative

tasks get even harder if the administrator configures the units from a remote location

without being able to see the physical setup.

The configuration parameters for an EXM-unit are only stored in the unit itself. If the

15

16 CHAPTER 3. PROBLEM DESCRIPTION

unit breaks, the configuration parameters cannot be recovered. Because of the chain-design

a failed unit will break the chain, which disables all channels previously added in the ASI-

chain. A quick replacement of a failed unit is hard to achieve when all the configuration

parameters must be manually restored.

Since the EXM-product family’s targeted market is small cable TV operators, it is

important to minimize the initial cost of deployment. Therefore, A2B has decided that no

additional hardware should be necessary to operate an EXM-system. With this in mind,

A2B has introduced two features in the EXM-product roadmap to deal with the issues

above:

1. Only one EXM-unit should host a configuration interface for the whole EXM-system,

which is aware of the system topology. Only one IP-address is needed to address the

configuration interface, and since the topology is available, it can be presented to the

administrator.

2. By distributing an EXM-unit’s configuration parameters among the other units in

the system, the parameters are preserved in case of a unit failure. The configuration

interface is then able to restore parameters from a failed unit to a replacing one.

With the above features as a starting-point, the requirements in appendix A have

been elaborated together with A2B. In addition to the requirements directly related to

the features above, the concept of system-wide services is introduced. Services, such as

the configuration interface, that previously were defined as local for every unit, are now

defined as global for the whole EXM-system. A service is provided by the system to an

external client and should always be available from one of the units in the system. The

requirements also state that a service should be reassigned to another unit if the hosting

unit fails.

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Ta bort?

Mathias Andersson
Inte ens en dator behövs?

3.2. THESIS QUESTIONS 17

3.2 Thesis questions

The system described by the requirements shares many fundamental properties with an

autonomic system. By utilizing this fact, the solution can be described in terms of an

autonomic system. We have decided to find a solution that is as general as possible while

still conforming to the requirements. A general solution can be applied to any system with

network enabled devices.

By answering the following questions it is possible to describe an autonomic system for

IP-network environments that satisfies the requirements:

1. How can elements in an autonomic system address and communicate with

each other?

The elements in an autonomic system need a protocol and a unique identifier to commu-

nicate with each other. This question only concerns the communication between elements,

and not how an autonomic system communicate with equipment outside the system.

2. How can an autonomic system coexist and be addressable in an existing

IP-network?

The autonomic system exists in an IP-network and should be viewed as a single network

entity. The system should be addressed as a single entity and, the internal autonomic

system communication should not interfere with communication outside the system.

3. How can elements in an autonomic system detect system state changes?

Elements in an autonomic system should be aware of all other elements and be able to

detect environmental changes within the system.

Mathias Andersson
Frågorna skall få svar i kapitel 4 och visst finner man svaren implicit i texten. Hade dock gärna sett lite mer konkreta svar på de individuella frågorna så man kan relatera mellan frågan och svaret. Exempelvis kan man i slutet på kapitel 4 repetera frågorna och säga specifikt vad som var svaret på den.

18 CHAPTER 3. PROBLEM DESCRIPTION

4. How can the availability of services in the autonomic system be guaranteed

at all times?

Services that an autonomic system should provide to equipment outside the system needs

to be available at all times, even if a part of the system fails.

5. How can configuration parameters for an element in an autonomic system

be preserved if the element fails?

To make the autonomic system tolerant to element failures, configuration parameters for

every element needs to be known by the autonomic system. If an element fails the config-

uration parameters for that element should still be accessible from the system.

3.3 Summary

Today it is a complex task to administrate an EXM-system. The lack of a system-wide

configuration interface that is able to visualize the system topology together with the loss

of configuration parameters are two important factors. Together with A2B, requirements

for a solution to the problems were assembled.

A solution can be described as an autonomic system, which has the benefit of being

reusable in more projects than the EXM-system. This thesis should describe such a generic

solution by answering five questions based on the requirements elaborated together with

A2B.

Chapter 4

Solution

The most important purpose of this thesis is to propose a solution to a generic autonomic

system for IP-network environments, supporting multiple services and data preservation.

A generic solution is preferable in order to be able to use the solution in other projects

than the EXM-project. In this chapter such a generic solution is described by answering

the questions stated in 3.2. The questions are answered in section 4.1 – 4.5, one question

per section.

4.1 System addressing and communication

Elements in an autonomic system need to communicate with each other to maintain sys-

tem status information and to preserve configuration parameters. The messages used to

exchange this information are further discussed in section 4.3, 4.4 and 4.5. Each EXM-unit

is equipped with an Ethernet-interface that is used for both communication between the

units and with external equipment.

19

20 CHAPTER 4. SOLUTION

Figure 4.1: Ethernet II frame

4.1.1 Communication protocol

The protocol used to send messages between elements in the autonomic system can be

implemented directly on top of the Data Link Layer in the OSI model[18], or on the

application layer utilizing the complete TCP/IP model[19].

In the first approach messages are sent directly in the payload of an Ethernet II

frame[20], see figure 4.1. This implies low overhead both in the amount of data trans-

mitted, and in the computing resources used since no further processing by an IP-stack

is needed. On the other hand there is no built in mechanism for reliable data transport,

and as shown in figure 4.1, each message needs to be smaller than 1500 bytes to fit into an

Ethernet II frame.

In the second approach, TCP provides a solution for both reliable data transport and

fragmentation of messages too large for a single Ethernet frame. Besides TCP, the IP layer

has an optional feature to fragment large messages[19]. However, the maximal size of a

single datagram is 65 kbyte because of the 16-bit fragment offset field in the IP header. The

TCP/IP stack used in the EXM-units, lwIP[16], supports the IP fragmentation feature.

4.1.2 Messages

Since each element in the autonomic system should be aware of every other element, most

of the messages should be distributed to all elements in the system. This is true for both the

heartbeat messages described in section 4.3, and, partially, for the configuration messages

4.1. SYSTEM ADDRESSING AND COMMUNICATION 21

described in section 4.5.

The distribution of the messages can be accomplished in two different ways. A message

can be repeatedly unicasted to every element in the system, or a single message can be

broadcasted on the network.

Both approaches presented in section 4.1.1 can handle unicast and broadcast messages.

However, the TCP/IP model cannot provide any reliable transport if broadcast messages

are used. TCP can only be used with unicast because of it’s connection oriented nature[21].

4.1.3 Reliable vs. Unreliable communication

To evaluate the need of a reliable protocol we have looked at how important it is that a

specific message gets delivered, and what the consequences are if it does not. A heartbeat

message is by it’s definition periodically sent to all elements. If one heartbeat message

is lost a new one will be available in a short while even without a reliable protocol. The

consequence of a lost message is that a timeout can occur as discussed in section 4.3.

However, the timeout value can, and in fact should, be adjusted to take the possibility of

message loss into account.

Configuration messages are used to propagate the backup of an element’s configuration

parameters to all other elements. Keeping the configuration copies up to date is essential

for the reconfiguration of a replacing element. If a message is lost, it may result in a

reconfiguration with outdated parameters. A reliable communication protocol can partly

solve this issue, but not completely. A reliable protocol can only guarantee the delivery of a

sent message, it cannot cope with the dynamics of an autonomic system. For example, if an

element joins the system after the configuration parameters are propagated, a mechanism

to send all other elements’ current configuration parameters to the joined element is needed.

By putting information about an element’s current configuration parameters in every

heartbeat message a receiving element can continuously monitor the correctness of it’s

backup copies and, in case of an incorrect configuration, take actions as described in

Mathias Andersson

Mathias Andersson

Mathias Andersson
"looked" känns konstigt här.

Mathias Andersson
Varför plötsligen personlig form?

22 CHAPTER 4. SOLUTION

section 4.5.

4.1.4 Conclusion

TCP, which is the only reliable transport protocol available on the EXM-units, lacks sup-

port for broadcast. The implementation of a reliable protocol with support for broadcast

would require a great amount of resources which in the end do not solve the message

distribution problem completely. An unreliable protocol complemented with information

from the heartbeats can guarantee that the information gets distributed in the autonomic

system sooner or later. This satisfies our requirements with much less effort than a reliable

protocol, which makes it the preferred solution.

The choice of an unreliable protocol leaves the selection of the TCP/IP model or a

protocol on top Data Link layer open for discussion. However, a small but rather important

feature in TCP/IP makes the selection of TCP/IP as the preferred technology easy. Since

messages larger than the maximal packet size for Ethernet II frames will be transmitted

(see section 4.5) the fragmentation support in IP becomes important.

The TCP/IP model use UDP[22] for unreliable transport. The use of TCP/IP also

ensures future integration with third party products, since virtually every network enabled

device supports TCP/IP.

4.2 Coexistence and addressing in an IP-network

In this section it is discussed how the autonomic system can be addressable and integrated

in an IP-network. This should be accomplished with minimum or no impact on the ex-

isting network infrastructure. The autonomic system depends on IP-addresses for both

internal communication between elements (see section 4.1) and access from clients. Thus,

autonomic elements must be configured with an IP-address even if there are no supporting

addressing infrastructure in place.

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Syftningsfel. Är det resurserna eller implementationen som inte löser problemet?

Mathias Andersson
Vad menas med "client" här?

4.2. COEXISTENCE AND ADDRESSING IN AN IP-NETWORK 23

4.2.1 Addressing methods

An IP-address can be set manually or be acquired by an automatic addressing scheme.

Manually configured addresses are said to be static whereas automatic assigned addresses

are said to be dynamic. Dynamic Host Configuration Protocol (DHCP)[23] and link-local

addresses[24] are both examples of automatic addressing schemes. DHCP uses a client-

server model to operate. A DHCP-server provides the client with configuration parameters,

including an IP-address. Link-local addressing is a mechanism that automatically config-

ures a network interface with an IP-address in the 169.254.0.0/16 subnet. The address is

randomly selected with a seed based on the Media Access Control (MAC) address of the

network interface. Link-local addressing allows hosts on a Local Area Network (LAN) to

communicate over IP without manual configuration or a DHCP-server in place.

4.2.2 Internal addressing

As stated earlier, elements within the autonomic system depend on IP-addresses to com-

municate with each other. The choice of an internal addressing scheme depends on both

the requirements and design decisions made. The first issue to consider is whether static

or dynamic addressing should be used.

Static addressing demands manual involvement in terms of setting the IP-address and

maintaining an address database to avoid conflicts when elements join or leave the au-

tonomic system. Due to the manual intervention and the risk of address conflicts with

existing network equipment, static addressing is not an option.

A more suitable solution is to use a dynamic addressing scheme. We have decided to

focus on DHCP and link-local addressing because they are the most common automatic

addressing schemes used in communication systems. Either DHCP, link-local addressing,

or a combination of them both can be used. To only use DHCP is not an option, because

the availability of a DHCP service cannot be guaranteed (see appendix A.1).

24 CHAPTER 4. SOLUTION

Link-local addresses are often used as a fallback mechanism to DHCP when no such

service is in place. When a DHCP enabled client fails to acquire an IP-address from the

DHCP-server, the client automatically configures a link-local address. This combination

is a possible solution. However, introducing DHCP does not create any additional value

to the autonomic system, it rather adds more uncertainty. A failing DHCP service could

create an undesirable state where the autonomic elements acquire a mix of DHCP and

link-local addresses.

The low impact on external equipment and the lightweight method of automatically as-

signing IP-addresses makes link-local addressing a suitable solution for the internal element

communication. By using link-local addressing, no extra network traffic will be generated

for acquiring an IP-address. Furthermore, link-local addressing will not affect any DHCP

service that might already be in place on the LAN.

4.2.3 External addressing

Section 4.2.2 discussed the addressing between autonomic elements whereas this section

will cover the addressing between clients and the autonomicsystem. A client is an arbitrary

piece of software or hardware component that needs to address the autonomic system for

configuration or utilization of services. The requirements listed in appendix A.2 state that

the autonomic system should be addressable by an IP-address, both from local and non-

local clients. A local client is located on the same LAN as the autonomic system, whereas

a non-local client connects from another network, for example through Virtual Private

Network (VPN) or Network Address Translation (NAT).

As depicted in figure 4.2, the autonomic system is logically separated from the clients on

the LAN. By design, the system should be viewed as a single network entity, and individual

elements within the system should not be addressed directly by it’s internal address (see

section 4.2.2). The autonomic system will provide the clients with different services. In

section 4.4 a detailed discussion about services and their availability is given. Every service

Mathias Andersson

Mathias Andersson
Samma "client" som ovan?

4.2. COEXISTENCE AND ADDRESSING IN AN IP-NETWORK 25

Figure 4.2: Logical view of autonomic system addressing.

needs to be uniquely identified, either by IP-address or by IP-address and port. This means

that the autonomic system should be addressed by one or more IP-addresses from both

local and non-local clients.

Single vs. Multiple IP-addresses

One approach is to address the autonomic system with a single IP-address. As stated above,

each service needs to be uniquely identified. This implies that with just one IP-address the

TCP or UDP port must be used to separate the services provided by the autonomic system.

The single IP approach requires the implementation of an extra dispatch service. This

service should listen on the system IP-address and the corresponding TCP or UDP ports

for the configured services within the system. The dispatcher must know on which elements

the configured services are hosted, which is discussed section 4.4. Incoming requests for

a particular service will then be proxied or tunneled to the element which currently hosts

the requested service.

Another approach is to use multiple IP-addresses to address the autonomic system. In

this case one service is mapped against one IP-address. Each element that hosts a service

will be configured with an IP-address bound to the specific service. Furthermore, if an

element releases a service, the IP-address also needs to be released and attached to the

element that will continue to host the service. This could cause temporary connection

Mathias Andersson

Mathias Andersson
"in"

Mathias Andersson
Borde nog vara "Element" istället för "EXM" så det knyter ann till texten lite bättre.

26 CHAPTER 4. SOLUTION

failures due to Address Resolution Protocol (ARP) cache timeouts on the clients.

Both approaches imply that an element must be able to attach several IP-addresses, one

for internal addressing and at least one for external addressing. The support for multiple

IP-addresses needs to be implemented in lwIP[16].

We have decided to use the multiple IP approach. The single IP approach has a nice

conceptual property in term of the single network entity view. It also involves less IP-

addresses than the second approach, but the implementation would be too complex and

introduces a single point of failure. If the dispatcher service fails, no other service will be

available to the clients.

Static vs. Dynamic addressing

As the previous section discussed, the multiple IP approach, that use one IP-address per

service, was selected. These addresses can be either statically or dynamically assigned. The

nature of dynamic addresses (e.g. DHCP or link-local addressing) implies that the clients

must have a mechanism to discover where in the autonomic system a specific service is

currently hosted. This mechanism is needed because the address of a particular service will

change over time. One such mechanism is the Simple Service Discovery Protocol (SSDP)

from the Universal Plug and Play (UPnP) protocol suite[25]. However, the autonomic

system must support arbitrary clients, which may not support dynamic service discovery.

Thus, we can not rely on any service discovery protocol to enable a client to address the

autonomic system.

Dynamic addresses also cause problems when a client should connect through NAT.

The Internet Gateway Device (IGD) that supports the NAT operation must be able to

map an external IP-address and port to a corresponding internal address/port pair for a

given service. If the internal address changes due to it’s dynamic property, the IGD will

not be able to forward traffic for that particular service.

We have decided to use one static IP-address per service, which eliminates the need

4.3. DETECTION OF SYSTEM STATE CHANGES 27

of a service discovery protocol. The address will not change over time and a client will

always know where a specific service is hosted. However, the client can only connect to

the autonomic system if it knows the associated address of the requested service. Further-

more, static addresses will eliminate the NAT problem discussed above. The use of static

addresses and the associated services will be discussed in the section 4.4.

4.3 Detection of system state changes

When an element in the autonomic system changes it’s state, the state change needs to be

propagated to every other element. Examples of state changes are when an element boots

up, an element is assigned a service or when an element has a new configuration. The state

change information can be used by the elements to keep a current view of the system.

An element is able to detect it’s own state changes and notify every other element about

them. However, certain events, such as an element failure, need to be detected by other

elements in the system. Instead of sending a notification, an element can periodically send

it’s current state to the other elements. This approach enables the other elements to detect

all kind of state changes for sending the element.

4.3.1 Periodic messages

The paper Towards an Autonomic Computing Environment[26] propose heartbeat messages

as a possible solution to propagate an element’s current state. Distributed software systems,

such as GulfStream described in [27], use the same approach.

Heartbeat messages are, as the name implies, periodically sent messages indicating that

an element is alive. If the heartbeat messages stop, the element can be assumed to be dead.

As shown in figure 4.3 every element needs a heartbeat generator to periodically send it’s

own heartbeats and a heartbeat monitor to retrieve other elements’ heartbeats.

A heartbeat message can be used for several purposes. The appearance of a heartbeat

28 CHAPTER 4. SOLUTION

Figure 4.3: Heartbeat generators and monitors in an autonomic system.

indicates that an element is up and operational. When no heartbeat message, from a given

element, is received for a period of time, the element can be assumed to be non operational.

The period of time to wait before invalidating an element is further discussed in section

4.3.3. Except for the operational status, a heartbeat should provide a summary of the

element’s current state by including metadata in the message. For the specific case of this

thesis the metadata includes information about the element’s predecessor in the ASI-chain

(see section 2.3), a summary of the element’s current configuration (see section 4.5) and a

list of the element’s active services (see section 4.4).

4.3.2 Detect changes and monitor current status

Received heartbeats should be stored in a list as depicted in figure 4.3. System state

changes can be detected in two different ways. The first approach compares an incoming

heartbeat with the previous received heartbeat from the same element. This approach

provides immediate action upon changes, but the number of comparisons required grows

exponentially as the number of elements increase.

Another approach is to use a system monitor to periodically review the list of heartbeats

Mathias Andersson

Mathias Andersson

Mathias Andersson
Upprepning från föregående sida.

4.3. DETECTION OF SYSTEM STATE CHANGES 29

Figure 4.4: Example: comparison of the current system state and the desired system state.

and compare the system state with a desired state. This approach can detect the lack of

recent heartbeats, but cannot really detect state changes. Instead it compares the current

system state with a state determined to be the desired state for the autonomic system.

The desired state is determined by configuration parameters and the current system state.

In figure 4.4 an example where the current system state is compared to the desired system

state is shown. In the current system state two services are active, one service at element

1, and one at element 4. In the desired state all three services are active. Preferably,

the third service should be activated on element 2 or 3. The system monitor detects the

missing service and an election process can be initiated as described in section 4.4.

The second approach is always needed as it is the only approach that can detect the

failure of an element. The first approach can be used to take immediate action upon

changes, but for the autonomic system described in this thesis those changes can also be

described in terms of a desired state.

Mathias Andersson
Lite otydligt markerade "Service 1"

30 CHAPTER 4. SOLUTION

4.3.3 Intervals & Timeouts

With the heartbeat messages several intervals and timeouts are introduced. The heartbeat

message itself should be generated and sent with a given time interval. The length of the

interval should be selected to a sufficient trade-off value between the detection time of

system state changes, and the load of network and elements. A short interval results in

fast state change detection, but generates more traffic on the network than a long interval

would do. The optimal interval should be determined when more parameters about the

targeted system are known. For example, the overall networkload in a typical system, and

the system resources needed for a single heartbeat, are important parameters that need to

be known.

The interval of which the current state should be compared with the desired state suffer

from the same trade-off problem as the heartbeat message interval, but is also dependent

on the heartbeat message interval. An interval shorter than the heartbeat message interval

dramatically decreases the probability that a system state change has occurred, and thus

makes little sense.

If an element has not received a heartbeat from another element for a given amount

of time the element should be regarded as failed. This timeout value is dependent on the

heartbeat message interval, but also the transport protocol in use (see section 4.1). As

an unreliable protocol is used, packets can be lost. The timeout must be long enough to

make sure that the absence of heartbeat messages is because of an element failure, and

not because of packet loss. On a switched 100base-TX[28] network, which is used for the

autonomic system in this thesis, packet loss are rare and a timeout value a few times the

heartbeat message interval should be sufficient. The consequences of a false timeout are

discussed in section 4.1.3.

4.4. AVAILABILITY OF SERVICES 31

4.4 Availability of services

The EXM-system described in section 2.3 provides a number of networked services to

equipment outside the system. According to the requirements listed in appendix A.4,

every service should be available at all times. The services should also be distributed

among the EXM-units to minimize the load of a single unit. The autonomic system is

responsible for distributing the services to elements, but not to operate the services.

4.4.1 Description of a service

A service is identified by a service identification which is comprised of a type of service

and an IP-address. An example of a service in this thesis is a webserver, which provides a

configuration interface to an administrator. As discussed in section 4.2.3, the IP-address

is a static address that clients can use to connect to the service. Besides the service

identification a service can have type-specific configuration parameters.

Services are configured for a logical group. Every element belongs to a logical group

and shares the service configuration with elements within the same group. The concept of

logical groups is discussed in section 4.5.4.

4.4.2 Requirements

The requirements state that the availability of services should be guaranteed in the auto-

nomic system. To meet the requirements the following three aspects need to be considered.

Detect a missing service

At any given point in time the autonomic system must detect if a configured service is

not available from any element in the logical group. If a missing service is detected the

autonomic system should trigger a selection process where the service is assigned to one of

the elements within the group.

32 CHAPTER 4. SOLUTION

Figure 4.5: Service assignment when missing services are detected.

Figure 4.6: Detection of conflicting services.

One situation where services are missing is depicted in figure 4.5(a). When the system

boots up, none of the configured services are available, and a selection process should start

for every service. In figure 4.5(b) the situation where an element with one or more assigned

services fails, is illustrated.

Detect conflicting services

When more than one element is assigned a service where the IP-address part of the service

identification are equal, a conflict has occurred. A conflict can arise from two different

situations. An example where elements in the same logical group for some reason are

isolated from each other (e.g. network failure) is illustrated in figure 4.6(a). Every element

4.4. AVAILABILITY OF SERVICES 33

Figure 4.7: Uneven distribution of services detected.

is assigned all configured services. When the elements regain connectivity the autonomic

system must detect the conflict and make sure that a given service is only assigned to one

element.

The second situation, depicted in figure 4.6(b), can arise when elements from more than

one logical groups are connected. If services in different groups are configured with the

same IP-address a conflict occurs. To prevent a conflict, no more than one of the conflicting

services should be assigned to an element. This approach can result in a situation where a

service can never be assigned to an element. However, this situation is caused by manual

intervention and can therefore be assumed to be resolved by a manual reconfiguration.

Even distribution of services

The configured services in a group should be distributed among the active elements to

minimize the number of assigned services on a single element, and thereby spread the load.

The autonomic system should assign an unassigned service to one of the elements with the

least number of previously assigned services.

When new elements are added to a group, or when previously disconnected elements

boots up, the autonomic system should recognize the new state and make sure the services

are evenly distributed. In figure 4.7 an example where element A and B are assigned two

services each is illustrated. The added elements C and D should be assigned one of those

services each.

Mathias Andersson

Mathias Andersson
Här ska det nog inte vara något "s"

34 CHAPTER 4. SOLUTION

Figure 4.8: Example of an election phase with the bully algorithm. Image from the book “Dis-
tributed Systems Concepts and Design”[29].

4.4.3 The Bully Algorithm

To find an algorithm that is able to distribute services according to the requirements

listed in the previous section, the research area of distributed systems is of interest. In

distributed systems one of the fundamental issues is to coordinate the participants, which

need to agree upon actions and values[29]. An election algorithm can be used to select one

of the participants to perform a particular role. The use of an election algorithm can in

the context of this thesis be used to assign services in compliance with the requirements

above.

One popular election algorithm for distributed systems is the bully algorithm[30] pro-

posed by Garcia-Molina in 1982. The algorithm uses discrete priority numbers to elect the

4.4. AVAILABILITY OF SERVICES 35

best suited process as coordinator. Every participating process has it’s own priority num-

ber and the one with the highest number gets elected. When a process has not received any

messages from the coordinator for the time interval T1 it assumes that the coordinator has

failed. The process that first detects the failure initiates an election procedure by sending

an election message to all processes with higher priority numbers than itself. The initiating

process waits for the time interval T2 for answer messages confirming that the replying

processes are functioning. If no answer messages are received the process has the highest

priority number and elects itself as the new coordinator. To announce the election it sends

a coordinator message to every process with lower priority number than itself. If an answer

message is received within T2 the process waits another time interval T3 for a coordinator

message. If no coordinator message is received the election procedure is restarted.

When a process receives a coordinator message it admits the sender as the new coordi-

nator and aborts a possible ongoing election procedure.

A process that receives an election message replies with an answer message and starts

it’s election procedure.

An example where process p1 detects that the coordinator p4 has failed is shown in

figure 4.8. It sends an election message to p2 and p3 which both reply with an answer

message. In Stage 2, both p2 and p3 have started an election procedure. Before T2 has

timed out in p3, the process fails as shown in Stage 3. In Stage 4 the process p2 has

waited for the interval T3 without receiving a coordinator message. It restarts the election

procedure and waits for another period T2 before it can elect itself as the new coordinator.

Finally, p2 sends a coordinator message to p1 to notify the election.

4.4.4 Multiple services election algorithm

The election algorithm proposed for the autonomic system is inspired by the bully al-

gorithm but with a few major differences. The bully algorithm is designed to elect one

coordinator whereas the algorithm proposed here must be able to elect multiple coordina-

Mathias Andersson

Mathias Andersson
Varför P2 och inte P1 som timeout?

36 CHAPTER 4. SOLUTION

BEGIN
Check for conflicting services
1. If I have a conflicting service
1.1. Stop service, and remove from list of my services
1.2. Decrease my load value
1.3. Generate new heartbeat

Check for missing services
2. If I have the highest priority number
2.1. If any configured service is not assigned

2.1.1. If the missing service conflicts with any assigned service
2.1.1.1. Check for another missing service (from 2.1.)

2.1.2. else
2.1.2.1. Start service and add to list of my services
2.1.2.2. Increase my load value
2.1.2.3. Generate new heartbeat
2.1.2.4. Exit election algorithm

Check for uneven distribution of services
3. If uneven distribution detected
3.1. Stop one service, and remove it from list of my services
3.2. Decrease my load value
3.3. Generate new heartbeat

END

Table 4.1: Multiple services election algorithm

tors (services). Another difference is the introduction of heartbeats described in section

4.3, which implicitly add functionality needed by the election algorithm.

In table 4.1 an outline of the proposed algorithm is shown. The most important aspects

of the algorithm is described in the sections below.

Multiple services

In the bully algorithm the priority numbers are fixed values, which is sufficient as long

as only one service should be elected. If fixed priority numbers are used when electing

multiple services it results in a scenario where the element with the highest priority number

is assigned all the configured services. To avoid this behavior, and fulfill the requirement of

even distribution, the priority number needs to be dynamic and based on the current load

of an element. More assigned services should result in a higher load value, thus a lower

priority number, for the element.

The load value can be equal for more than one element in the system, and since the

Mathias Andersson

Mathias Andersson

Mathias Andersson
Kan inte olika "services" vara olika krävande? Räcker det då med att bara använda antalet för att bestämma "load value"?

Mathias Andersson
Borde kanske heta något annat än "table"

4.4. AVAILABILITY OF SERVICES 37

priority number must be unique according to the bully algorithm, it cannot be used alone

to form the priority number. However, by combining the load value with a unique identifier

for each element unique priority numbers can be derived. The priority number can then

be defined as in (4.1).

priority number =
1

load value | unique id
(4.1)

Find the element with the highest priority number

The election and answer messages in the bully algorithm serve two purposes. The election

message is used by an element to trigger the election procedure on other elements. This

speeds up the invocation of the election procedure because only one element needs to detect

a missing coordinator. Furthermore the election message together with the answer message

are used to confirm that a process with higher priority number is functioning.

Since the heartbeat messages are periodically sent, every element has an updated list

of functioning elements. This eliminates the need of election and answer messages to

determine which elements are functioning. By embedding the priority number in the

heartbeat message an element can also determine if it is the element with the highest

priority number.

In every element the system monitor periodically checks formissing services. When the

element with the highest priority number detects a missing service, it assigns the service

to itself, increases it’s load value, and generates a new heartbeat to inform the other

elements about the assignment and the new priority number (step 2. in table 4.1). If an

element with a low priority number detects the missing service first, the duration until the

service is assigned could be decreased with the election message from the bully algorithm.

However, for this thesis the decreased assignment duration does not motivate the increased

complexity added by an implementation of election messages.

Mathias Andersson

Mathias Andersson

Mathias Andersson
Hur kombineras dessa? Binary Or? Kan inte detta resultera i identiska "priority number"? Risken är kanske inte så stor men hanteras detta?

Hur påverkar sammanslagningen med det unika id att olika prioritets tal jämförs för att finna det högsta?

38 CHAPTER 4. SOLUTION

Detection of missing and conflicting services

The heartbeat messages include information about active services. This information can

be used to detect both missing services and conflicting services.

By comparing configured services with the services reported from heartbeats an element

can detect missing services (2.1. in table 4.1). An example of the comparison is depicted

in figure 4.4. If a missing service is detected the algorithm proceeds by checking that no

conflicting services (e.g. services with the same IP-address) are currently active in the

system.

In a similar way it is also possible to detect conflicting services among the already

assigned services (step 1. in table 4.1). If a conflict is detected the element drops the

service immediately. If both elements with the particular service detect the conflict at the

same time, they will both drop the service. Next time the element with the highest priority

number runs the election algorithm, the service will be detected as missing.

Uneven distribution of services

The last step of the algorithm (step 3. in table 4.1) detects uneven distribution of services.

An element compares the load value part of it’s own priority number by the value of the

element with the highest priority number. Definition (4.2) states the equation for uneven

distribution. If the element with the highest priority number have a load value equal or

less to the value of the current element, the current elementwill drop a service. Next time

the element with the highest priority number runs the election algorithm, the service will

be detected as missing.

loadval(my.services − 1) ≥ loadval(hpe.services + 1) (4.2)

4.5. PRESERVATION OF ELEMENT CONFIGURATION 39

4.5 Preservation of element configuration

In this section it is discussed how an autonomic element’s configuration parameters should

be preserved in case of failure. The preservation protects against loss of information and

enables fast recovery of a failed element.

4.5.1 Information that should be saved

A quick recall from section 2.2.2 tells us that each autonomic element has one or more man-

aged components and an autonomic manager that controls the behavior of the managed

components. Most of the information that should be preserved from an element concerns

the managed components. This is because the information about a managed component is

static and manually configured whereas information in the autonomic manager is generated

and dynamic by nature.

In the context of this thesis the parameter about an element’s predecessor in the ASI-

chain, described in section 2.3, is of special interest. This parameter needs to be preserved

and distributed to be able to create a snapshot of the topology when a new configuration

is saved. The snapshot is used when restoring the configuration of a failed element which

is discussed in section 4.5.3.

4.5.2 Distribution & Storage

Due to the fact that we cannot rely on a central server for storage of configuration param-

eter backup, the parameters must be distributed and stored on each autonomic element.

In other words, each element stores configuration data from all other elements. This guar-

antees that all but one element can fail before any information loss occurs.

When the autonomic manager detects that configuration parameters are saved, it will

broadcast the new configuration to all the elements in it’s group (see section 4.5.4). As

discussed in section 4.1 the elements will use UDP to broadcast messages to each other.

40 CHAPTER 4. SOLUTION

The unreliable nature of UDP can cause inconsistency, because the delivery of a broad-

casted message cannot be guaranteed. To solve this issue, the periodically sent heartbeats,

discussed in section 4.3, will contain information that makes an element able to detect

inconsistency. If an element detects that it has an obsolete configuration saved for another

element, the detecting element will send a request for a new configuration. The request

will be sent directly to the concerned element, which will reply with a message containing

it’s configuration parameters.

4.5.3 Recovery of a failed element

If an element fails and is replaced with a new one, the autonomic system should supply

the necessary details to ease the process of getting a new element up and running. The

saved information about an element’s predecessor constitutes the snapshot of the topology

at configure time. When a replacing element is inserted into the system, the snapshot

compared to the current topology is used to identify which of the saved elements the new

one replaces. As discussed in section 4.5.1, still operational elements have a duplicate

of the failed element’s configuration. The saved configuration can now be applied to the

replacing element.

The method described above can be used to automatically restore a failed element’s

configuration in line with the self-healing property of an autonomic system. However, for

this thesis a fully automatic process is not desired. The method can still be used to support

a semi-automatic process where the autonomic system suggests a saved configuration.

4.5.4 Group identification and logical groups

An element in the autonomic system needs a mechanism to keep track of which other

element configurations it should preserve. When an element is moved from one autonomic

system to another the configurations for the elements in the old autonomic system are not

relevant anymore. But what if two autonomic systems of equal size are merged? In figure

4.5. PRESERVATION OF ELEMENT CONFIGURATION 41

Figure 4.9: Example: Merging elements from 2 different autonomic systems.

Figure 4.10: Example: Merging elements from 2 different autonomic systems with group iden-
tification.

4.9 an example where element B and D need to be replaced is illustrated. The replacing

elements F and H have previously operated in AS2. Neither element A and C or F and H

can automatically determine if they have been inserted into a new system, or if they are left

in the original system. To support the semi-automatic process described in section 4.5.3

A and C need to hold on to the preserved configurations for B and D until the replacing

elements have been reconfigured.

A solution is to introduce a group identification which is unique for every composition

of elements. An element should only preserve configurations from elements with the same

group identification. An example where elements in the autonomic system AS1 belongs

to the group G1, and elements in AS2 belongs to G2 is illustrated in figure 4.10. The

configuration interface uses A’s preserved configurations for B and D to reconfigure F

and H. After the reconfiguration is done a new group identification G3 is assigned to all

elements in AS1. As an element only preserves configurations from elements in the same

group, A and C removes the old entries for B and D when the new group identification is

42 CHAPTER 4. SOLUTION

Figure 4.11: Proposed solution applied to the EXM-system.

assigned. Likewise F and H removes the entries for E and G.

The introduction of group identification also enables the administrator to partition the

autonomic system into logical groups.

4.6 Summary

In figure 4.11 it is illustrated how the solution proposed in this chapter is applied to an

EXM-system.

In the right part of the figure a complete EXM-system is described. Every unit is

connected to an Ethernet bus, and communicates with each other over a UDP channel.

The communication is used, among other things, for heartbeats to provide every unit with

a complete view of the system. The units have received a random IP-address in the link-

local scope (169.254.0.0/16), and every service is assigned a static IP-address. From a

client’s point of view, it is the EXM-system that provides three services, but in practice

the services are assigned to unit (a), (c) and (f) respectively.

A single unit is described in the left part of the figure. The unit stores a list of the

Mathias Andersson

Mathias Andersson
Är detta verkligen en summary? Borde kanske heta något annat.

Mathias Andersson
Beskriv förhållandet mellan "unit" och "element". Eventuellt här eller början av kapitel 5, men om ni hittar ett bättre ställe så ta det där.

4.6. SUMMARY 43

last incoming heartbeat from every other unit, as well as configuration parameters from

units in the same logical group. The unit has 3 configured services, and one of them,

S2, is assigned to the unit. Two modules for generating and receiving heartbeats exist as

well as a system monitor module responsible for keeping the list of heartbeats up to date.

The system monitor together with the service election module detects missing services,

and if the unit is best suited to be assigned to a service, the service is assigned. The

configuration manager module sends the unit’s configuration parameters to other units in

the unit’s group, and stores configuration parameters received from other units.

Chapter 5

Design and implementation

To realize the solution presented in the previous chapter, a prototype of an autonomic

manager for the EXM-platform was built. The prototype was developed in parallel to the

work done trying to find solutions for the problems discussed in chapter 3. The parallel

work created continuous feedback on which ideas that were feasible to implement on the

EXM-platform. In this chapter, the design- and implementation details of the prototype

are given. It is also described how a simulator was developed in order to be able to test the

prototype on regular PC-hardware. Finally, the testbed created to verify the prototype’s

functionality is described.

5.1 Autonomic manager design

In the paper Towards an Autonomic Computing Environment[26], by Roy Sterritt and Dave

Bustard, it is discussed how a system architecture can support the autonomic properties

self-configuration, self-optimization, self-healing and self-protection. To realize a software

implementation of the solution presented in chapter 4, we have combined ideas from this

paper together with our own ideas to fit the context of this thesis.

In figure 5.1, the architecture of an autonomic element is depicted. An autonomic

45

Mathias Andersson

Mathias Andersson

Mathias Andersson
Överväg personlig form.

Mathias Andersson
Överväg personlig form.

46 CHAPTER 5. DESIGN AND IMPLEMENTATION

Figure 5.1: Design overview of an autonomic element.

element is comprised of two main parts, the managed components and the autonomic

manager, where the manager is responsible for monitoring and adjusting the managed

components. The components within the autonomic manager are discussed in the following

sections.

5.1.1 System knowledge

The System knowledge database serves as a central knowledge base. The database creates

a uniform interface for reading and writing data and is utilized by the other components

within the autonomic manager.

A central part of the system knowledge is the system unit database (SUD). The SUD

contains information about the element itself and all other elements within the autonomic

5.1. AUTONOMIC MANAGER DESIGN 47

system. The SUD is necessary to be able to detect system state changes, which is discussed

in section 4.3. Information about other elements is gathered by the heartbeat manager,

which is discussed in section 5.1.6. Each entry in the SUD corresponds to an element in

the autonomic system. An entry contains the following information:

• Bootup flag - A flag to indicate if the element just restarted. Only set in the first

heartbeat after reboot.

• Unit identification - The element’s unique serial number.

• Predecessor identification - The unique serial number of the element’s predecessor

in the ASI-chain.

• Group identification - The identification of the group which the element belongs

to.

• Configuration parameter checksum - A checksum of the element’s configuration

parameters.

• Load value - The element’s current resource utilization, which is based on the

number of active services.

• Timestamp - Point in time where the heartbeat was received. Updated by the

receiving element.

• IP-address - The IP-address of the element.

• List of active services - Active services currently running on the element.

The group unit configuration (GUC) database is also an important part of the system

knowledge. It contains configuration parameters from other elements in the autonomic sys-

tem. The storage of configuration parameters is for redundancy reasons which is discussed

in section 4.5. The configuration manager component (see section 5.1.7) is responsible for

reading and writing configuration parameters stored in the GUC database.

48 CHAPTER 5. DESIGN AND IMPLEMENTATION

5.1.2 Internal monitor

The internal monitor is responsible for observing the state of the managed components. If

the internal monitor detects a state change, it triggers actions in the concerned components

within the autonomic manager. For example, actions in the configuration manager will be

invoked when new configuration parameters are saved, which should be distributed to all

the elements in the same group.

When a new group configuration is set by the configuration interface, the monitor

detects the change and updates the system knowledge database.

5.1.3 Self adjuster

The self adjuster modifies the state of the managed components. If an undesirable state is

detected by the autonomic manager, the self adjuster is invoked to correct the behavior of

one or more managed components.

As shown in figure 5.1, if the service election manager (see section 5.1.8) detects that

a service should be started or stopped, it invokes the self adjuster that can perform the

desired task.

5.1.4 External monitor

The external monitor is an essential part of the autonomic manager that enables commu-

nication between elements. It listens on the autonomic signal channel to create a linkage

between the autonomic managers within the autonomic system.

A network protocol has been developed (see section 5.3.4), which creates a uniform

interface for communication among the elements. When the external monitor receives

a message from the signal channel it forwards the message to the appropriate manager

component for further processing. As depicted in figure 5.1 the heartbeat, service election

and configuration manager receive messages from the external monitor.

5.1. AUTONOMIC MANAGER DESIGN 49

5.1.5 System monitor

In order to be able to detect state changes in the autonomic system the system monitor

continuously compares the current state with the desired state. By querying the system

knowledge database, the system monitor can compare values and take actions if anomalies

are detected.

As discussed in section 5.1.1 the SUD contains element entries that are composed of

information from received heartbeats. The system monitor uses a timestamp value in

each entry to detect if an element is operational or not. If the timestamp is older than a

predefined timeout value, the entry is removed from the SUD.

To ensure a healthy status of the configured services, the system monitor consults the

service election manager, which is covered in section 5.1.8.

As discussed in section 4.5.2, the autonomic manager must ensure that it has stored

the correct configuration parameters for a given element. Configuration parameters are

stored in the GUC database together with a checksum. By using the checksum from

the GUC and the SUD (see section 5.1.1), the system monitor can detect if incorrect

configuration parameters are stored. If the monitor detects an outdated config, it invokes

the configuration manager which will request a new unit configuration from the concerned

element.

5.1.6 Heartbeat Manager

The heartbeat manager is responsible for sharing a summary of an autonomic element’s

current state to other elements within the autonomic system. This is accomplished by

broadcasting a heartbeat message on the autonomic signal channel. The content of a

heartbeat message is gathered from the system knowledge database. Details about heart-

beat messages are discussed in section 4.3.

When the external monitor receives a heartbeat message, it passes the information to

Mathias Andersson

Mathias Andersson
Behövs verkligen en referens här?

50 CHAPTER 5. DESIGN AND IMPLEMENTATION

the heartbeat manager for further processing. A timestamp and the IP-address of the

sender are added before the data is written to the system knowledge database.

5.1.7 Configuration manager

As discussed in section 4.5, the elements in the autonomic system share configuration pa-

rameters for redundancy reasons. The configuration manager is responsible for broadcast-

ing the element’s configuration parameters if they are updated through the configuration

interface. Furthermore, the configuration manager has the capabilities to request and re-

ceive configuration parameters from a specific element. Received configuration parameters

are saved in the GUC database.

5.1.8 Service election manager

In section 4.4 it is discussed how the autonomic system manages services. The system

must be able to detect a missing service, find conflicting services and distribute services

evenly to spread the load. The service election manager ensures that these requirements

are satisfied. The election manager is implemented according to the proposed algorithm

in table 4.1.

5.2 Design decisions

In this section important design decisions are discussed. The tools that helped us produce

the design documents are described as well as structural considerations.

5.2.1 Object oriented design methods

To ease the identification and implementation of the autonomic manager components de-

scribed in section 5.1.1 to 5.1.8, Unified Modeling Language (UML) was used to create

Mathias Andersson

Mathias Andersson
Överväg personlig form.

5.2. DESIGN DECISIONS 51

Receive other unit's config

Config request received

Broadcast unit's config

Configuration Manager

Send unit's config

External Monitor

Figure 5.2: Use case diagrams describing unit config distribution.

design artifacts. Use case diagrams were used to identify the functionality of the system.

With the help of the use case diagrams and sequence diagrams, a class diagram was created

to describe the structure of the prototype. Each identified autonomic manager component

is represented by a class with associated members (attributes and methods).

Use case diagram

In figure 5.2 four use cases concerning configuration parameter distribution are shown.

The actor Configuration Manager is associated with all the four use cases, whereas the

actor External Monitor is only associated with two of them. As discussed in section

5.1.7, the configuration manager is responsible for broadcasting an element’s configuration

parameters if they are updated through the configuration interface. The configuration

manager is also responsible for requesting and receiving configuration parameters from a

specific element. Configuration requests and other elements’ configuration parameters are

received through the external monitor (see section 5.1.4).

Sequence diagram

The sequence diagrams were used to identify how the autonomic manager components

should relate to each other. A scenario where a unit configuration is received is depicted

Mathias Andersson

Mathias Andersson

Mathias Andersson
Det är inte med i use case diagrammet?

52 CHAPTER 5. DESIGN AND IMPLEMENTATION

 : SystemKnowledge : ConfigurationManager

[i yG up == true]opt

1.1: receive(config : UnitConfig)

2.2: inMyGroup(unitID : int) : bool

2.3: storeUnitConfig(unitID : int, config : UnitConfig)

2.1: receiveUnitConfig(config : UnitConfig)

 : ExternalMonitor

ronM

Figure 5.3: A sequence diagram that describes the reception of a unit config.

ConfigurationManager

+ sendUnitConfig(ipaddr : int)

+ requestUnitConfiguration(ipaddr : int)

+ receive(config : UnitConfig)

- receiveUnitConfigReq(config : UnitConfig)

- receiveUnitConfig(config : UnitConfig)

Figure 5.4: The class ConfigurationManager.

in figure 5.3. The external monitor receives the parameters from the network and passes

the information to the configuration manager via the method receive(). The receive()

method calls the private method receiveUnitConfig(), which asks the system knowledge

if the sending element is in the same group as the element itself. If the group matches, the

configuration parameters are saved in the system knowledge database.

Class diagram

In figure 5.4 the class ConfigurationManager is depicted. The class has three public

and two private methods. The public methods are: sendUnitConfig(), requestUnit-

5.2. DESIGN DECISIONS 53

Configuration() and receive(), and, the private methods are receiveUnitConfigReq()

and receiveUnitConfig().

To represent the autonomic manager components, the following classes have been iden-

tified:

• ConfigurationManager

• SystemKnowledge

• HeartBeatManager

• ExternalMonitor

• InternalMonitor

• SystemMonitor

• ServiceElectionManager

• SelfAdjuster

5.2.2 Process management

One issue that has major impact on the design of the autonomic manager is process blocking.

Blocking can occur in many situations, for example when a process waits on network

messages to arrive on a socket, or an endless loop (e.g. while and for) that performs an

iterative task.

Blocking is not always desirable since no other code is executed while the process is

blocking. Consider the client-server model where a server provides a service to the clients.

In table 5.1, the pseudo code for accepting client connections in a single process server

application is shown. This server is only able to handle one client at a time, because the

recv() operation will block until any data is received on the socket sock, hence no new

54 CHAPTER 5. DESIGN AND IMPLEMENTATION

connections will be accepted. The described example could be extended to handle multiple

simultaneous connections by using techniques, such as select(), that monitor activity on

multiple sockets within a single process.

Another solution to the problem above is to handle each client connection in a separate

process or thread. When a client connects to the server a new process is created and

each client is served separately. This approach is used to handle blocking scenarios in

the autonomic manager. Each component that performs iterative tasks or blocking I/O

operations runs as a separate process. The rest of the components’ functions are executed

from the calling process. The following components have been identified to run as separate

processes:

• External monitor - Listens to the autonomic signal channel for messages from other

autonomic elements.

• Heartbeat manager - Periodically sends heartbeat messages to the autonomic

signal channel.

• System monitor - Periodically compares the desired state with the current state.

• Internal monitor - Listens for messages from managed components.

In the OS21 environment a process is called a task, and is created with the API function

task_create which is described in table 5.2. Although that it is convenient to divide pro-

gram functionality in separate processes, care must be taken when data is shared between

different processes. Process synchronization (mutexes and semaphores) is needed to ensure

that data is read and written in a controlled way.

5.3 Autonomic manager prototype

In this section important details about the implementation are described. The decision

to develop a simulator is explained as well as the autonomic managaer API provided to

Mathias Andersson

Mathias Andersson
"that" känns fel här.

5.3. AUTONOMIC MANAGER PROTOTYPE 55

...
serverSocket = socket(AF_INET, SOCK_STREAM, 0);
bind(serverSocket, (struct sockaddr*) &serverAddr, sizeof(struct sockaddr));
listen(serverSocket, QUEUE_SIZE);

while(1) {

sock = accept(serverSocket, 0, 0);

bytes = recv(sock, buf, BUF_SIZE, 0);

//Process data in buf

close(sock);
}
...

Table 5.1: Code example: Server code for accepting client connections

external components. The network protocol used by the autonomic managers for internal

communication is also described.

5.3.1 Implemented features

The prototype includes all functionality of the autonomic manager described in the design

phase (see section 5.1) except for the self adjuster. The self adjuster should modify the

managed components of the element, and thus needs to be aware of the managed compo-

nents’ APIs. Since those APIs is not implemented in the EXM-firmware yet, it has not

been possible to implement a fully functioning self adjuster.

5.3.2 Object-oriented design in C

In the design phase object-oriented methods were used to design the autonomic manager.

The prototype should be implemented in C, and since C is not an object-oriented language

a conversion to C specific concepts was needed. The conversion is limited to a structural

conversion and do not take advantage of all object-oriented features. Every class is imple-

mented in a separate *.c-file with public methods and attributes declared as functions and

Mathias Andersson

Mathias Andersson
Borde kanske heta något annat än "table"

56 CHAPTER 5. DESIGN AND IMPLEMENTATION

variables in a corresponding *.h-file. Private methods and attributes are declared as static

functions and variables in the *.c-file, which cause a scope local to the file.

5.3.3 Autonomic Manager API

The autonomic manager provides both a C API and a Lua API to access information

about the autonomic system. The APIs contain functions for getting a list of elements

in the system, the system topology, and saved configuration parameters for elements in

the same logical group. The web interface can use the Lua API to illustrate the EXM-

system’s current topology as well as to configure a replacing element with the old element’s

configuration parameters.

5.3.4 Network protocol

As described in section 4.1 the communication between the autonomic managers runs over

the transport protocol UDP. For the external monitor to be able to distinguish the different

type of messages that need to be sent, an application layer protocol is defined. In figure

5.5(a) the generic structure of the protocol is shown. The first byte defines the type of

message, and the rest contains type specific data.

In figure 5.5(b) the heartbeat message is described. The message contains the same

information that is stored in the SUD (see section 5.1.1), except for the IP-address which

is implicitly set from the IP-header. The S. cnt field defines the number of active services

and is followed by the service ids, each 5 bytes large. In figure 5.5 (c) and (d) the messages

for requesting and receiving a unit’s configuration are described. The configuration request

message contains no type specific data. The configuration message contains the unit id of

which the configuration is valid for (the sender), a checksum of the configuration, and the

configuration data itself.

Mathias Andersson

Mathias Andersson
Beskrivs detta interface i lite mer detalj någonstans? Så som uppgift och placering i systemet, ifall ni implementerar det osv.

5.4. SIMULATOR 57

Figure 5.5: The autonomic manager protocol and it’s subtypes.

5.4 Simulator

To effectively develop software for the EXM-units a development kit together with a unit

are required. In fact, several units are required to be able to test the functionality of an

autonomic system. Because of the limited number of available development kits and units,

it was not feasible to develop code directly for the target hardware platform.

One option was to implement the prototype as a regular PC application. This approach

would allow extensible testing where scalability and functionality could be measured with

multiple PCs, or multiple virtual machines within a single PC. Even if the PC application

was to be written in the same programming language (C) as the final product, a conversion

of system calls and other OS dependent functions would be required.

We decided to write a simulator that provides the OS21 kernel API and lwIP API to

Mathias Andersson

Mathias Andersson
Personlig form.

58 CHAPTER 5. DESIGN AND IMPLEMENTATION

(a) Create an OS21 task

#include <os21/task.h>
task_t* task_create(

void (*function)(void*),
void* param,
size_t stack_size,
int priority,
const char* name,
task_flags_t flags);

(b) Implementation of task_create in simulator

task_t * task_create(
void (*funcp)(void *),
void * param,
size_t stack_size,
int priority,
const char * name,
task_flags_t flags)

{
task_t *thread_pointer = (task_t*)malloc(sizeof(task_t));
if(pthread_create(thread_pointer, NULL, (void *(*)(void*))funcp, param))
{

fprintf(stderr, "pthread_create %s\n", strerror(errno));
exit(-1);

}
return thread_pointer;

}

Table 5.2: Code example: OS21 task_create() API in simulator

the autonomic manager code. This approach enables testing and simulations on a PC while

the produced code still compiles and runs on the EXM-hardware.

A code example from the simulator is presented in table 5.2. In (a) the definition of

OS21’s task creation function is given. A task in OS21 is similar to the common thread

concept, with a stack for every thread and with the possibility to share data and send

messages between threads. In (b), the implementation of task_create in the simulator is

displayed. The simulator creates a new POSIX thread that is transparently used in place

of an OS21 task.

Mathias Andersson

Mathias Andersson

Mathias Andersson
Referens här istället för på s.59

Mathias Andersson
Borde kanske heta något annat än "table"

5.4. SIMULATOR 59

5.4.1 Functionality

The simulator includes APIs for the OS21 kernel as well as the lwIP-stack. It runs on a

Linux-host and uses POSIX[31] threads for IPC and the Linux network stack for simulating

the lwIP functionality. Except for the two APIs described above, the parts of A2B’s

common codebase that are used by the autonomic manager are included in the simulator.

The autonomic manager use, for example, linked lists and memory management functions

from the common codebase.

The simulator also includes code from A2B that is needed to test all functionality of

the autonomic manager. To be able to test the Lua API for the autonomic manager both

a telnet server and a web server are included.

5.4.2 Autonomic manager integration

The simulator is built as a single executable with all functionality included at compile

time. It is comprised of two parts where the first part is the simulated functions, e.g.

the EXM-environment. The source and header files are structured in the same directory

structure as in the original environment to ensure correct includes. The second part of

the simulator is the main routine which is responsible for initiating the simulator as well

as the autonomic manager. The main routine is also used for printing periodic debugging

information.

The autonomic manager prototype resides in a separate directory to avoid dependencies

between the simulator and the prototype.

5.4.3 Configuration of simulator

The autonomic manager depends on parameters that is specific to the hardware it

runs on. Those parameters also need to be simulated. To be able to simulate different

hardware for every instance of the simulator, the simulator uses a configuration file. An

Mathias Andersson

Mathias Andersson
Flytta referensen till föregående sida.

60 CHAPTER 5. DESIGN AND IMPLEMENTATION

EXM unit ID
unit_id = [0x3, 0x50, 0x0, 0x82, 0x21, 0x0, 0x0, 0x1];

ASI predecessor
predecessor_id = [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00];

Group ID
group_id = [0x3, 0x50, 0x0, 0x82, 0x21, 0x0, 0x0, 0x1];

Active roles
group_services = ((1, [192,168,0,1]), (2, [192,168,0,2]));

MAC address
mac_address = [0x0, 0x22, 0x80, 0x10, 0x12, 0x01];

Autonomic manager enabled
am_enabled = 1;

Table 5.3: Example of configuration file for the simulator.

example of the configuration file is shown in table 5.3. The unit_id, predecessor_id and

mac_address are hardware dependent parameters, while group_id, group_services and

am_enabled are configuration parameters on the EXM-platform as well.

The hardware parameters are provided on the EXM-platform as special functions and

the configuration parameters are provided through generic configuration parameter func-

tions. In the simulator those functions are implemented as wrappers for the configuration

file.

In order to simulate a unit’s configuration parameters that should be preserved, another

file is used. Since the autonomic manager handles the configuration as a binary string, and

do not care about the content, the file used by the simulator iswritten from a random data

source.

When the predecessor_id, group_id or the unit configuration changes on an EXM-

unit an event is triggered which is handled by the autonomic manager. The simulator

periodically checks the files for changes to achieve a similar behavior.

Mathias Andersson

Mathias Andersson
Borde kanske heta något annat än "table"

5.5. TEST AND VERIFICATION 61

Figure 5.6: An overview of the testbed environment.

5.5 Test and verification

In order to be able to test the prototype and verify it’s functionality, a test environment

using the simulator was created.

5.5.1 Test environment

The structure of the created testbed is depicted in figure 5.6. A Linux operating system

serves as the host and is the foundation of the setup. The virtualization software Sun

xVM VirtualBox [32] runs on top of the host to enable the creation and execution of virtual

machines.

As shown in the figure, the testbed contains four virtual machines, A-D. Each virtual

machine runs a guest operating system, which in this case is a minimal installation of

Gentoo Linux. To enable the execution of the autonomic manager prototype, the simulator

described in section 5.4 is installed on each guest. Each autonomic element (a virtual

62 CHAPTER 5. DESIGN AND IMPLEMENTATION

machine) is assigned an IP-address, which enable the managers to exchange messages

through the virtual network provided by the virtualization software.

The test environment described above, allows testing of four concurrent autonomic

elements at a given time. However, it is possible to add more virtual machines to simulate

a larger set of elements.

5.5.2 Verification

All functionality that is implemented in the prototype has been tested with the testbed

described above. In the list below it is described how the different components of the

autonomic manager were tested.

• Heartbeat manager - The heartbeat manager was tested by starting all four auto-

nomic managers, and then by manual inspection, verify the content of every managers

SUD. To verify the periodicity of the heartbeats the networkwas monitored with the

packet sniffer Wireshark[33].

• Internal monitor - State changes in managed components are simulated by editing

the configuration file for the simulator. The functionality was verified by changing

one parameter at a time, hence triggering an event, and then check for the expected

action. For example, a new predecessor_id should result in a new heartbeat mes-

sage with updated values and possible a new topology.

• System monitor - The system monitor was tested by stopping one or more of

the four autonomic managers, and then inspecting the content of the SUD in the

managers still running. The system monitor should remove the stopped elements

after a given timeout and call the service election manager in order to check services.

• External monitor - Since the external monitor only forwards incoming network

messages to the heartbeat manager, service election manager and configuration man-

ager it’s functionality was implicitly tested when the other functions were tested.

Mathias Andersson

Mathias Andersson

Mathias Andersson
"possibly"?

Mathias Andersson
Lite otydligt ifall det är heartbeat-meddelandet som innehåller den nya topologin eller ifall det resulterar i en ny topologi för systemet.

5.6. SUMMARY 63

• Service election manager - The service election manager was tested together with

the system monitor. By strategically stopping autonomic managers which possessed

one or more services, new service elections were forced. The functionality could be

verified by inspecting the SUD of the running managers.

• Configuration manager - The functionality of the configuration manager was veri-

fied by changing the binary string that is used to simulate an element’s configuration

parameters. The simulator sends an event which is handled and forwarded to the

configuration manager by the internal monitor. By inspecting the SUD and GUC

on all running autonomic managers, the propagation of the new configuration was

verified. To verify the configuration request mechanism, one autonomic manager was

stopped while another manager updated it’s configuration. The stopped autonomic

manager was then started, and it’s SUD and GUC were inspected to verify that the

new configuration was requested and received.

• Self adjuster - The self adjuster was not fully implemented because the components

in the EXM-system that should be managed is not available yet. Hence, the self

adjuster has not been tested.

All tests were completed successfully in the simulator, and the first tests to run the

autonomic manager on the EXM-hardware have also been successful. However, since all

supporting functionality is not implemented in the EXM-system yet, only the heartbeat

manager, system monitor and external monitor have been completely tested on the EXM-

hardware.

5.6 Summary

This chapter has covered the design and implementation of an autonomic manager proto-

type. The autonomic manager is comprised of several components, that operate together

64 CHAPTER 5. DESIGN AND IMPLEMENTATION

to monitor an element’s internal state and external environment. Object-oriented design

methods were used to design the autonomic manager and the classes were converted to

concepts available in C when implementing the prototype.

The decision to develop a simulator for the OS21 kernel API and lwIP API gave us the

advantage to test the prototype in a controlled Linux environment. The produced code

could then, without modifications, be recompiled and executed on the EXM-hardware.

All functionality except for the self adjuster was implemented in the prototype, and all

functionality was verified to work in the simulator.

A Lua API and a C API are provided to allow convenient access to functionality and

information in the autonomic manager. For example, the web configuration interface uses

the Lua API to get a list of all elements in the system. An application layer protocol was

developed to support message exchange between the managers in the autonomic system.

The protocol defines three types of messages: a heartbeat message and two configuration

messages, one for requesting and one for sending configuration parameters.

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Ändra till "implemented functionality" för att förtydliga vad som är testat.

Mathias Andersson
Ovan säger ni att "self adjuster" var delvis implementerad, var det så eller inte?

Mathias Andersson
Här undra man lite ifall det är ni som gjort "web configuration interface"et och ifall det är en av de olika "service" som skall hanteras?

Chapter 6

Conclusion

In this thesis a solution of a general autonomic system for an IP-network environment

has been proposed. The prototype that implements the ideas from the solution was also

described. In this chapter the results of the project described in this thesis are stated.

Furthermore, the design decisions made and the use of the autonomic system concept are

discussed. Subjects for future work are also suggested in this chapter.

6.1 Results

In chapter 3, five thesis questions were stated. Those questions are answered in chapter 4

and the answers together constitute the proposed solution.

The solution propose an autonomic system where elements communicate with each

other using the transport protocol UDP. Two different addressing methods are used. The

elements address each other with IP-addresses assigned from the link-local addressing

scheme. Services that the autonomic system provides to external clients are addressed

by one static IP-address per service. In order to be able to detect state changes in the

autonomic system every element periodically broadcasts heartbeat messages to every other

element. The heartbeat information is also used by each element to make sure that auto-

65

66 CHAPTER 6. CONCLUSION

nomic system services are available and properly distributed in the system. An element’s

configuration parameters are distributed to every other element to preserve the parameters

in case of an element failure.

The work described in this thesis has also resulted in a prototype of an autonomic man-

ager based on the proposed solution. The implementation of the prototype was successful,

which confirmed the feasibility of the solution. Parts of the prototype code have already

been integrated into the EXM-firmware.

As a side-effect of the limited access to EXM-hardware, a simulator running on regular

PC-hardware was also developed. The simulator was used to test the prototype and can

be of further use for A2B.

6.2 Discussion

The decision to use the autonomic system concept as a foundation for this thesis was made

at the very beginning of the project. When A2B presented the assignment, an initial

literature study was made to find a suitable entry point for a solution. The requirements

in the assignment proved to be similar to many properties of an autonomic system. For

example, the requirements stated that EXM-units should be aware of each other, just like

elements in an autonomic system need to be environment aware. Furthermore, the self-

healing property of an autonomic system relates to the requirement of fast reconfiguration

of a failed unit. Another aspect of the self-healing property is the requirement of availability

of services. If an EXM-unit with an assigned service fails, another unit should automatically

be assigned the service. Services should, according to the requirements, also be evenly

distributed among the units, which can be related to the self-optimization property.

Although other solutions for A2B’s assignment exist, we believe that the autonomic

system concept has helped us to capture important aspects that we otherwise would have

missed. The research papers in the area of autonomic systems have also been of great use

Mathias Andersson

Mathias Andersson

Mathias Andersson
Överväg personlig form.

Mathias Andersson
Överväg personlig form.

6.3. FUTURE WORK 67

when structuring the prototype.

The development of a simulator was a successful strategy. The simulator enabled us to

use the powerful debugging tools available in a Linux environment, while still producing

EXM-hardware compatible code. If the autonomic manager had been dependent on special

hardware, such as a tuner, the simulator strategy had been much harder to realize.

After completing a project in the area of autonomic computing, we can confirm that

it is hard to build a fully automatic system with minimal manual intervention. Elements

in an autonomic system need a vast amount of knowledge about themselves and their en-

vironment in order to always make correct decisions. Although it is hard to build a fully

automatic system, a semi-automatic system can still ease administrative tasks and fulfill

many of the autonomic system properties. The solution proposed in chapter 4 does not ful-

fill all autonomic system properties, but all the properties needed to meet the requirements

for the EXM-system.

The proposed solution together with the prototype described in chapter 5 can hopefully

serve as a base for projects with prerequisites similar to the project described in this thesis.

6.3 Future work

To improve and fully utilize the functionality provided by the proposed solution the fol-

lowing subjects are of special interest for future work.

6.3.1 Integration into EXM-system

Parts of the prototype still need to be integrated into the EXM-firmware. APIs for the

managed components need to be developed before the missing parts can be integrated.

However, the most important task is to make use of the functionality the autonomic system

provides. A2B’s goal is to have a system-wide configuration interface where information

from the autonomic manager is used to visualize and configure all EXM-units in a system.

Mathias Andersson

Mathias Andersson
Om systemet är "fully automatic" så borde det inte vara någon "manual intervention" alls.

68 CHAPTER 6. CONCLUSION

It should also be used to restore configuration parameters from a failed unit by using the

configuration parameters stored in the autonomic manager.

6.3.2 Self-healing

In the configuration interface described above, an administrator can configure a replacing

unit with the failed unit’s configuration parameters by fetching a backup from the auto-

nomic manager. This function can be further developed to a fully automatic recovery.

When a new unit is inserted in the same place of the topology as a previous unit, the au-

tonomic system should be able to discover the replacement and automatically reconfigure

the inserted unit. Further research is needed to prevent faulty reconfigurations in special

cases.

6.3.3 Service discovery

In the proposed solution, each service provided by the autonomic system is addressed by

a static IP-address. Static addressing is inconvenient because it requires manual config-

uration. Implementation of a service discovery protocol would allow external clients to

dynamically request the current location of a service, which eliminates the need of static

addresses. Several service discovery protocols exist, but no standard has been agreed upon.

If a standard protocol becomes available on the clients, it is of great interest to implement

the protocol in the autonomic manager.

Appendix A

Requirements

The requirements that are described in this chapter serve as a foundation and a starting-

point for the project described in this thesis. The following requirements were identified

together with A2B at the beginning of the project.

A.1 General

An EXM-unit cannot depend on any external equipment to fully operate.

No additional hardware or services are installed to support the operation of EXM-units.

E.g. no central server for storage.

A.2 Address assignment

At least one EXM-unit should be addressable from a client on the local IP-

network.

To be able to configure and manage the EXM-system at least one EXM-unit should always

have an IPv4 address. Regardless of how the EXM-unit and the client obtain their addresses

they should be able to communicate over IP. This is strongly related to section A.5.

69

70 APPENDIX A. REQUIREMENTS

At least one EXM-unit should be addressable from a client connecting via

port-mapping (NAT).

In order to be able to configure and manage the EXM-system remote at least one EXM-unit

should be accessible from a client outside the LAN. This implies that the IGD (Internet

Gateway Device) should be able to forward traffic to at least one addressable EXM-unit.

At least one EXM-unit should be addressable from a client connecting via

VPN.

In order to be able to configure and manage the EXM-system through VPN at least one

EXM-unit should be addressable from a VPN client. Regardless of how the VPN client

obtain it’s IPv4 address it should be able to communicate with at least one addressable

EXM-unit.

The address assignment scheme should not interfere with any existing equip-

ment in the IP-network.

The communication between the client and the EXM-unit is dependent on proper address

assignment. This implies that there should be an address assignment scheme in place.

However, the chosen scheme should not interfere with any existing addressing schemes.

A.3 Topology discovery

An EXM-unit should know about it’s predecessor (if any) in ASI-chain.

To be able to build the complete topology for the EXM-system every EXM-unit need to

know the identity of it’s predecessor. This can be accomplished through the ASI interface.

A.4. SERVICE ASSIGNMENT 71

Every EXM-unit should be able to "visualize" the system topology with the

help of all other units neighboring information.

To configure and manage the EXM-system every EXM-unit need to be able to build a

system topology graph. This is important because the units need to respond to changes

in the system and present the current system topology to the configuration interface.

Topology-changes during runtime should be recognized.

Topology changes include EXM-unit failures, addition and removal of units. To detect

where in the topology these changes have occurred every EXM-unit needs to have a runtime

topology graph to compare with the one set at configure time.

A.4 Service assignment

In the EXM-system a number of services can be identified. The list of services will change

over time as new services are developed. Today the following services are identified:

• Configuration interface - The configuration interface for the EXM-products is

web-based.

• Logger/monitor to external device (SNMP) - To be able to log events in the

EXM-system a SNMP server should listen for traps from the units in the system.

• SimulCrypt receiver[34] - SimulCrypt is used to receive encryption keys in order

to be able to scramble one or more channels.

The service assignment requirements are in most cases dependent on the requirement

listed in A.7 to be realized.

72 APPENDIX A. REQUIREMENTS

Every EXM-unit should be able to host any possible service in the system.

Every EXM-unit should have the same software to be able to host any possible service. If

an EXM-unit fails, another unit should be able to perform the failed units tasks.

At any given point in time each service need to be available from at least one

of the addressable EXM-units.

Every service needs to be assigned to a working EXM-unit at every point in time.

Possible services should be distributed among the EXM-units in such a way

that performance is not affected.

An EXM-unit have limited resources. To minimize the load on each unit, services should

be assigned to units with the lowest load in the EXM-system. The load depends on where

in the ASI-chain a unit resides (e.g. the last unit in every chain also encodes data) and if

the unit is already assigned to a service.

A.5 Service discovery

A client should be able to find an EXM-unit with a given service.

This is strongly related to section A.2. A client can only communicate with one of the

EXM-units at a time, the EXM-system needs to decide which of them.

If a client is located on the same physical network, but on a different logical

network (e.g. different subnet) than the EXM-unit, it should still be able to

access the EXM-unit.

Since there is no hardware reset functionality on the EXM-units, you must be sure to

always be able to connect to an EXM-unit.

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Hur går detta till? Uppfyller eran lösning detta krav?

A.6. SYSTEM CONFIGURATION 73

A.6 System configuration

System configuration should be distributed in the EXM-system.

After an arbitrary number of EXM-units have failed, the complete system configuration

should still be available in the EXM-system. The system configuration includes parameters

for each unit and information about topology at configure time.

Configuration of the EXM-system should be made through any of the EXM-

units which serves as a configuration-point.

Every EXM-unit should be able to present the whole EXM-system in a configuration

interface to a client. The new configuration should then be propagated to all EXM-units

in the system.

When a broken EXM-unit is replaced with a new one, the new unit should

semi-automatically be configured with the previous units config.

The EXM-system should recognize that a new EXM-unit replaces an old one. From the

configuration interface you should be able to simply accept this reconfiguration.

Semi-automatic configuration is only possible with preserved topology.

To keep the solution as simple as possible the above requirement is only valid when the

topology remains unchanged (e.g. one EXM-unit replace another).

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson

Mathias Andersson
Ert system kräver att minst en enhet fortfarande är vid liv.

Mathias Andersson
Specificera tydligare ifall alla enheter skall kunna presentera gränssnittet vid en och samma tidpunkt eller ifall det endast är en enhet i taget.

Mathias Andersson
Överväg personlig form.

Mathias Andersson
Specificera lite mer vad som menas med "semi-automaticaly"

74 APPENDIX A. REQUIREMENTS

A.7 Monitoring, logging and notification

EXM-units should be monitored to verify their existence and keep the topology

graph up to date.

To keep the topology graph in every EXM-unit up to date, the presence of units need to

be monitored. This is needed to support future monitor/logging services and to visualize

the current EXM-system in the configuration interface.

Acronyms

8PSK 8 phase-shift keying. 7

ARP Address Resolution Protocol. 26

ASI Asynchronous serial interface. 10, 11

CLI Command Line Interface. 13

DHCP Dynamic Host Configuration Protocol. 23, 24, 26

DVB Digital Video Broadcasting. 5–7, 10

FPGA Field-programmable gate array. 12

IGD Internet Gateway Device. 26

IPTV Internet Protocol Television. 7

LAN Local Area Network. 23, 24, 70

MAC Media Access Control. 23

MAPSK M-ary amplitude and phase-shift keying. 7

MUX Multiplex. 6

75

76 Acronyms

NAT Network Address Translation. 24, 26, 27

OFDM Orthogonal frequency-division multiplexing. 7

QAM Quadrature amplitude modulation. 7

QPSK Quadrature phase-shift keying. 7

SSDP Simple Service Discovery Protocol. 26

UML Unified Modeling Language. 50

UPnP Universal Plug and Play. 26

VPN Virtual Private Network. 24, 70

Bibliography

[1] DVB Project Office. Introduction to the dvb project [online].
2008. Fact sheet from the DVB Project Office. Available from:
http://www.dvb.org/technology/fact_sheets/DVBProjectFactSheet.0608.pdf
[cited 30 September 2008].

[2] European Telecommunication Standardization Institute (ETSI). Etsi tr 101 200, dig-
ital video broadcasting (dvb)- a guideline for the use of the dvb specifications and
standards., september 1997. Available from: http://www.etsi.org.

[3] European Telecommunication Standardization Institute (ETSI). Etsi tr 101 154, digi-
tal video broadcasting (dvb)– implementation guidelines for the use of mpeg-2 systems,
video and audio in satellite, cable and terrestrial broadcasting applications., july 2000.
Available from: http://www.etsi.org.

[4] ISO/IEC. ISO/IEC 13818. Information technology – Generic coding of moving
pictures and associated audio information. ISO/IEC, 2000.

[5] ISO/IEC. ISO/IEC 13818-1. Information technology – Generic coding of moving
pictures and associated audio information: Systems. ISO/IEC, 2007.

[6] European Telecommunication Standardization Institute (ETSI). Etsi en 300 421,
digital video broadcasting (dvb); framing structure, channel coding and modulation
for 11/12 ghz satellite services, august 1997. Available from: http://www.etsi.org.

[7] European Telecommunication Standardization Institute (ETSI). Etsi en 302 307, digi-
tal video broadcasting (dvb);second generation framing structure, channel coding and
modulation systems for broadcasting, interactive services, news gathering and other
broadband satellite applications, june 2006. Available from: http://www.etsi.org.

[8] European Telecommunication Standardization Institute (ETSI). Etsi en 300 429,
digital video broadcasting (dvb); framing structure, channel coding and modulation
for cable systems, april 1998. Available from: http://www.etsi.org.

77

http://www.etsi.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org
http://www.etsi.org

78 BIBLIOGRAPHY

[9] European Telecommunication Standardization Institute (ETSI). Etsi en 300 744,
digital video broadcasting (dvb); framing structure, channel coding and modulation for
digital terrestrial television, september 2008. Available from: http://www.etsi.org.

[10] European Telecommunication Standardization Institute (ETSI). Etsi en 302 755,
digital video broadcasting (dvb);frame structure channel coding and modulation for a
second generation digital terrestrial television broadcasting system (dvb-t2), october
2008. Available from: http://www.etsi.org.

[11] Jeffrey O. Kephart and David M. Chess. The vision of au-
tonomic computing. Computer, 36(1):41–50, January 2003.
Available from: http://dx.doi.org/10.1109/MC.2003.1160055,
doi:http://dx.doi.org/10.1109/MC.2003.1160055.

[12] P Horn. Autonomic computing: Ibm perspective on the state of information technol-
ogy. In IBM T.J. Watson Labs, NY, 15th October 2001. Presented at AGENDA 2001,
2001.

[13] N. Bicocchi and F. Zambonelli. Autonomic communication learns from nature. IEEE
Potentials, 26(6):42 – 6, 2007/11/. distributed systems;network resource manage-
ment;autonomic computing;application software;resource management;self-organizing
autonomic communication networks;.

[14] S. Schmid, M. Sifalakis, and D. Hutchison. Towards autonomic networks. pages 1 –
11, Paris, France, 2006//. autonomic networks;quality of service;autonomic system
definition;autonomic communication;.

[15] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communications.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 1(2):223–259,
2006.

[16] Swedish Institute of Computer Science. lwip - a lightweight tcp/ip stack [online]. 2008.
Homepage for lwIP. Available from: http://savannah.nongnu.org/projects/lwip/
[cited 30 October 2008].

[17] Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo. The pro-
gramming language lua [online]. 2008. Homepage for The Programming Language
Lua. Available from: http://www.lua.org/ [cited 10 December 2008].

[18] H. Zimmermann. Osi reference model - the iso model of architecture for open sys-
tems interconnection. IEEE Transactions on Communications, 28(4):425–432, 1980.
Available from: http://portal.acm.org/citation.cfm?id=59310.

Mathias Andersson

http://www.lua.org/
http://portal.acm.org/citation.cfm?id=59310
http://www.etsi.org
http://www.etsi.org
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/http://dx.doi.org/10.1109/MC.2003.1160055
http://savannah.nongnu.org/projects/lwip/
Mathias Andersson
Ska det vara så?

BIBLIOGRAPHY 79

[19] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard), October 1989. Updated by RFCs 1349, 4379. Available from:
http://www.ietf.org/rfc/rfc1122.txt.

[20] The ethernet: a local area network: data link layer and physical layer
specifications. SIGCOMM Comput. Commun. Rev., 11(3):20–66, 1981.
doi:http://doi.acm.org/10.1145/1015591.1015594.

[21] John Postel. Transmission control protocol. RFC 793, Inter-
net Engineering Task Force, September 1981. Available from:
http://www.rfc-editor.org/rfc/rfc793.txt.

[22] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980. Available
from: http://www.ietf.org/rfc/rfc768.txt.

[23] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft Stan-
dard), March 1997. Updated by RFCs 3396, 4361. Available from:
http://www.ietf.org/rfc/rfc2131.txt.

[24] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4 Link-
Local Addresses. RFC 3927 (Proposed Standard), May 2005. Available from:
http://www.ietf.org/rfc/rfc3927.txt.

[25] UPnP Forum. Upnp documents [online]. 2008.
The UPnP Device Architecture. Available from:
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf
[cited 17 November 2008].

[26] Roy Sterritt and Dave Bustard. Towards an autonomic computing environment. In
DEXA ’03: Proceedings of the 14th International Workshop on Database and Expert
Systems Applications, page 699, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[27] Sameh A. Fakhouri, Germán S. Goldszmidt, Michael H. Kalantar,
John A. Pershing, and Indranil Gupta. Gulfstream - a system for
dynamic topology management in multi-domain server farms. In
CLUSTER, pages 55–62. IEEE Computer Society, 2001. Available from:
http://dblp.uni-trier.de/db/conf/cluster/cluster2001.html#FakhouriGKPG01.

[28] IEEE. Ieee std. 802.3u: 1995. media access control(mac) parameters, physical layer,
medium attachment units, and repeater for 100 mb/s operation, type 100base-t, 1995.

[29] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems Concepts
and Design. Addison Wesley, third edition edition, 2001.

Mathias Andersson

http://dblp.uni-trier.de/db/conf/cluster/cluster2001.html#FakhouriGKPG01
http://www.ietf.org/rfc/rfc1122.txt
http://dx.doi.org/http://doi.acm.org/10.1145/1015591.1015594
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3927.txt
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.0-20080424.pdf
Mathias Andersson
Ska det vara så?

80 BIBLIOGRAPHY

[30] H. Garcia-Molina. Elections in a distributed computing system. IEEE Trans. Comput.,
31(1):48–59, 1982. doi:http://dx.doi.org/10.1109/TC.1982.1675885.

[31] Standard for information technology - portable operating system interface
(posix). shell and utilities. Technical report, 2004. Available from:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309816.

[32] Inc. Sun Microsystems. Virtualbox - virtualbox, december 2008. Available from:
http://www.virtualbox.org/wiki/VirtualBox.

[33] Gerald Combs. Wireshark: Go deep. [online]. 2009. Homepage for Wireshark. Avail-
able from: http://www.wireshark.org/ [cited 2 January 2009].

[34] European Telecommunication Standardization Institute (ETSI). Etsi ts 103 197, dig-
ital video broadcasting (dvb); head-end implementation of dvb simulcrypt, october
2008. Available from: http://www.etsi.org.

Mathias Andersson

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309816
http://www.virtualbox.org/wiki/VirtualBox
http://www.wireshark.org/
http://www.etsi.org
http://dx.doi.org/http://dx.doi.org/10.1109/TC.1982.1675885
Mathias Andersson
Ska det vara så?

	Introduction
	Scope of work
	Disposition

	Background
	Digital Video Broadcasting
	DVB-MPEG
	Transmission techniques

	Autonomic Systems
	Properties
	Managers and elements

	The EXM-product family
	Hardware
	Operating System
	User Interface

	Summary

	Problem description
	Background
	Thesis questions
	Summary

	Solution
	System addressing and communication
	Communication protocol
	Messages
	Reliable vs. Unreliable communication
	Conclusion

	Coexistence and addressing in an IP-network
	Addressing methods
	Internal addressing
	External addressing

	Detection of system state changes
	Periodic messages
	Detect changes and monitor current status
	Intervals & Timeouts

	Availability of services
	Description of a service
	Requirements
	The Bully Algorithm
	Multiple services election algorithm

	Preservation of element configuration
	Information that should be saved
	Distribution & Storage
	Recovery of a failed element
	Group identification and logical groups

	Summary

	Design and implementation
	Autonomic manager design
	System knowledge
	Internal monitor
	Self adjuster
	External monitor
	System monitor
	Heartbeat Manager
	Configuration manager
	Service election manager

	Design decisions
	Object oriented design methods
	Process management

	Autonomic manager prototype
	Implemented features
	Object-oriented design in C
	Autonomic Manager API
	Network protocol

	Simulator
	Functionality
	Autonomic manager integration
	Configuration of simulator

	Test and verification
	Test environment
	Verification

	Summary

	Conclusion
	Results
	Discussion
	Future work
	Integration into EXM-system
	Self-healing
	Service discovery

	Requirements
	General
	Address assignment
	Topology discovery
	Service assignment
	Service discovery
	System configuration
	Monitoring, logging and notification

	Acronyms
	Bibliography

