

Fakulteten för ekonomi, kommunikation och IT

Report

Software Engineering
Statement C

Date: 2006-10-02
Name: Henrik Bäck
Course: DAVC19
Instructor: Tim Heyer

Report | Software Engineering Fakultet 1 2006-10-02
Henrik Bäck Computer Science DAVC19

Page 2 of 5

Table of contents
Table of contents ..2
Introduction...3
We need to communicate ..3
Familiar with programming language ..3
With help of others...3
Communicating with costumer ..3
Discarding made artefacts ...3
References..4

Report | Software Engineering Fakultet 1 2006-10-02
Henrik Bäck Computer Science DAVC19

Page 3 of 5

Introduction
When communication is needed during software development different approaches are
possible. If it’s necessary to communicate with a person who is not familiar with
programming language the use of some design artifacts may be a good idea. These
documents should only be used for communication and should be discarded
afterwards.

We need to communicate
There are several times through software development when communication is very
important. If documents are used or not – it is always necessary to communicate in the
developing group. This according to [1].

Familiar with programming language
According to [1] very much of the information that usually will be written in the design
documents instead could be communicated through the group by social mechanisms.
Only documents that contribute to the code and tests are valuably according to [2].
Therefore it is, according to [1] and [2], possible to make a smaller amount of
documents and still make the system correct. If all the members of a group are familiar
with the programming language and how to write tests these documents are enough for
describing the design of the system. It is therefore not necessary to generate more
documents than needed, because they are not going to be used. The only thing that
really matters, according to both [1] and [2] is that the system is being built correctly.

With help of others
As said, the use of tests and programming code as the only design artefacts may be
devastating for group members who are not familiar with those. Mathematicians and
physicists are examples of group members who may not be familiar with programming
languages. In these cases, according to [5], it works well to communicate through
design artefacts and as described in [2] design artefacts may be produced if it is
necessary. Therefore it is a good idea to communicate thorough design artefacts with
persons who are not familiar with programming language.

Communicating with costumer
Customers are often not familiar with programming language and software
development. As described in [3] the uses of use-case is a good way to capture
requirements from a costumer without involving the use of programming language. It is
here a good idea to use design artefacts only to improve communication, as described
in [5].

Discarding made artefacts
It’s is important to use the artefacts that are made to communicate, otherwise they
should not be created; all though it can be a good idea to not update them after they
have for filled their duty. As can be read in [4] there is not worth the effort to continue
to update the artefacts. It is also said that if hey become out-of-date they can be
misleading. Therefore it can be a very good idea to discard the artefacts made to avoid
problems after they have been used.

Report | Software Engineering Fakultet 1 2006-10-02
Henrik Bäck Computer Science DAVC19

Page 4 of 5

References
[1] Extreme Programming Explained, Embrace Change
 KENT BECK, CYNTHIA ANDERS
 ISBN: 0-321-27865-8

[2] Benefits build [software development]
 Knoernschild, K. Source: Software Development, v 13, n 3, March 2005, 44-6
 ISSN: 1070-8588 CODEN: SDEIEV
 Publisher: CMP Media Inc, USA

 Abstract: What's the single most important activity your team can perform to get
 your project moving along? An automated and repeatable build! Why? Because an
 automated and repeatable build produces the only artifact that really matters to
 everyone associated with the project: the executable application. Certainly, a
 team may produce and use other valuable artifacts. But all those pretty
 documents will be quickly forgotten if you don't deliver the final product.
 Embodied in extreme programming's continuous integration practice, an
 automated and repeatable build can work wonders for your development team.
 First and foremost, it forces you to integrate early and often. You're guaranteed to
 always have a system that works. Of course, you need to follow two rules.
 First, all compile errors that surface must be resolved immediately. Since you
 should be using a version control system, such as CVS, this means that the CVS
 projects comprising your application should always be free of any compilation
 errors. Second, any unit test that fails must be immediately fixed. Unit and
 acceptance tests should be run after each change you make, and you should treat
 any test failure with the same urgency you'd give a compile error. While simple,
 these two rules are key elements because they're part of what defines an
 automated and repeatable build.

[3] The Unified Process, Explained
 KENDALL SCOTT
 ISBN: 0-201-74204-7

[4] Streamlining the agile documentation process test-case driven documentation
 demonstration for the XP2006 conference
 Brolund, Daniel (Agical AB); Ohlrogge, Joakim Source: Lecture Notes in
 Computer Science (including subseries Lecture Notes in Artificial Intelligence and
 Lecture Notes in Bioinformatics), v 4044 LNCS, Extreme Programming and
 Agile Processes in Software Engineering - 7th International Conference, XP
 2006, Proceedings, 2006, p 215-216
 ISSN: 0302-9743
 Conference: 7th International Conference on Extreme Programming and Agile
 Processes in Software Engineering, XP 2006, Jun 17-22 2006, Oulu, Finland
 Sponsor: Exoftware;Philips
 Publisher: Springer Verlag

 Abstract: In far too many software projects the value of the documentation
 delivered is not high enough to motivate the effort spent to write it. An outdated

Report | Software Engineering Fakultet 1 2006-10-02
Henrik Bäck Computer Science DAVC19

Page 5 of 5

 document can be as misleading as a good, up to date one can be helpful. This
 demonstration will show how unit tests complemented with descriptive
 comments can be used to generate documentation that is constantly up to date. Its
 demonstrated by example how both the static and dynamic features of a
 software system can be salvaged with very little effort to be presented to a bigger
 audience as relevant, readable documentation. © Springer-Verlag Berlin
 Heidelberg 2006. (2 refs.)

[5] Describing software architecture with UML
 Hofmeister, C. (Siemens Corp. Res. Inc., Princeton, NJ, USA); Nord, R.L.; Soni,
 D. Source: Software Architecture. TC2 First Working IFIP Conference on
 Software Architecture (WICSA1), 1999, 145-59
 ISBN: 0 7923 8453 9
 Conference: Proceedings of WICSA1: 1st Working IFIP Conference on Software
 Architecture, 22-24 Feb. 1999 , San Antonio, TX, USA
 Publisher: Kluwer Academic Publishers, Norwell, MA, USA

 Abstract: The paper describes our experience using UML, the Unified Modeling
 Language, to describe the software architecture of a system. We found that it
 works well for communicating the static structure of the architecture: the
 elements of the architecture, their relations, and the variability of a structure.
 These static properties are much more readily described with it than the dynamic
 properties. We could easily describe a particular sequence of activities, but not a
 general sequence. In addition, the ability to show peer-to-peer communication is
 missing from UML (13 refs.)

