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Introduction 
When communication is needed during software development different approaches are 
possible. If it’s necessary to communicate with a person who is not familiar with 
programming language the use of some design artifacts may be a good idea. These 
documents should only be used for communication and should be discarded 
afterwards. 

We need to communicate 
There are several times through software development when communication is very 
important. If documents are used or not – it is always necessary to communicate in the 
developing group. This according to [1].  

Familiar with programming language 
According to [1] very much of the information that usually will be written in the design 
documents instead could be communicated through the group by social mechanisms. 
Only documents that contribute to the code and tests are valuably according to [2].   
Therefore it is, according to [1] and [2], possible to make a smaller amount of 
documents and still make the system correct. If all the members of a group are familiar 
with the programming language and how to write tests these documents are enough for 
describing the design of the system. It is therefore not necessary to generate more 
documents than needed, because they are not going to be used. The only thing that 
really matters, according to both [1] and [2] is that the system is being built correctly. 

With help of others 
As said, the use of tests and programming code as the only design artefacts may be 
devastating for group members who are not familiar with those. Mathematicians and 
physicists are examples of group members who may not be familiar with programming 
languages. In these cases, according to [5], it works well to communicate through 
design artefacts and as described in [2] design artefacts may be produced if it is 
necessary.  Therefore it is a good idea to communicate thorough design artefacts with 
persons who are not familiar with programming language. 

Communicating with costumer 
Customers are often not familiar with programming language and software 
development.  As described in [3] the uses of use-case is a good way to capture 
requirements from a costumer without involving the use of programming language. It is 
here a good idea to use design artefacts only to improve communication, as described 
in [5]. 

Discarding made artefacts 
It’s is important to use the artefacts that are made to communicate, otherwise they 
should not be created; all though it can be a good idea to not update them after they 
have for filled their duty. As can be read in [4] there is not worth the effort to continue 
to update the artefacts. It is also said that if hey become out-of-date they can be 
misleading. Therefore it can be a very good idea to discard the artefacts made to avoid 
problems after they have been used. 
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