
Computer Supported Cooperative Work 13: 91–117, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

91

From Cards to Code: How Extreme Programming
Re-Embodies Programming as a Collective Practice

ADRIAN MACKENZIE1 & SIMON MONK2

1Computing Department, Faculty of Applied Sciences, Lancaster University, Lancaster LA1 4YR,
UK (Phone: +44(1524)594193; Fax: +44(1524)594273; E-mail: a.mackenzie@lancaster.ac.uk);
2SabiliLtd, Manchester, UK

Abstract. This paper discusses Extreme Programming (XP), a relatively new and increasingly
popular ‘user-centred’ software design approach. Extreme Programming proposes that collaborative
software development should be centred on the practices of programming. That proposal contrasts
strongly with more heavily instrumented, formalised and centrally managed software engineering
methodologies. The paper maps the interactions of an Extreme Programming team involved in build-
ing a commercial organisational knowledge management system. Using ethnographic techniques, it
analyses how this particular style of software development developed in a given locality, and how
it uniquely hybridised documents, conversations, software tools and office layout in that locality. It
examines some of the many artifices, devices, techniques and talk that come together as a complicated
contemporary software system is produced. It argues that XP’s emphasis on programming as the
core activity and governing metaphor can only be understood in relation to competing overtly formal
software engineering approaches and the organisational framing of software development. XP, it
suggests, gains traction by re-embodying the habits of programming as a collective practice.

Key words: co-ordination work, ethnography, extreme programming, software development
techniques, user-centred design

1. Introduction: Studying an XP project

UK cinemas currently show an advertisement for SAAB cars in which a golfer tees
off over the edge of an ice crevasse, a skier slaloms down what looks like a rock
face, a high-diver dives into a frozen pool, etc. The car itself, the ad implies not
without a touch of irony, also copes with similar extreme conditions. (A second
advertisement, usually shown a few minutes later, makes this irony explicit when
it describes how the frightened, freezing golfer lost several hundred golf-balls
during the shooting of the ad.) The ad plays on the wider popularity of extreme
sports. “Extreme environments” in Antarctica or on K2, “extreme sports” such
as “aggressive inline skating”, snow-boarding, “vert biking”, extreme bouldering,
“extreme ironing”, and now extreme programming or XP (not to be confused with
XP Windows, or the Athlon XP chip, etc.): why would computer programming and
software development need to become “extreme”? Extreme sport involves calcu-
lated risk-taking with minimal technical backup. Extreme sports tend to do without

92 ADRIAN MACKENZIE & SIMON MONK

much technical equipment. For instance, extreme bouldering involves climbing
large rocks with minimal assistance from ropes, carabiners, harnesses, pitons and
cleats. In each case, a controlled exposure to risk, especially of bodily injury,
occurs. Could software development become extreme in this sense? How could
it strip down to a bare minimum of equipment?

Addressing these questions, this study of an Extreme Programming project in
progress undertakes two tasks. Firstly, it evaluates some key aspects of XP in a real
world setting. It asks about the process of stripping work down to a minimum: why
cut back technical equipment to a minimum? Complementary to this question, it
asks: what kind of work goes into implementing XP at a specific site? How does
it gain traction amongst a group of developers so that their interactions and work
process can be effectively called “extreme programming”? What kinds of work do
they have to do to keep XP working as a process? Does that maintenance work,
and the skills it draws on, appear in the official accounts of XP? Here what actually
happens in an XP project – the shuffling through packs of cards, sitting around a
table together, announcing “flag’s up”, arguing about how code executes and using
certain kinds of specific software devices – will be the focus of attention.

Secondly, the paper asks a broader evaluative question about contemporary
practices of software engineering: how do software projects, software engineering
and development cope with a world or a “new economy” increasingly imagined
in terms of human and code mobility (Kelly, 1998)? Some conventional software
engineering methods heavily instrument the process of software development,
and in effect, attempt to batten down against a stormy outside world. XP takes
a different tack, and this tack might have implications for collaborative work
practices more generally.

In a different but not unrelated context, Star and Ruhleder argued that:

Experience with groupware suggests that highly structured applications for
collaboration will fail to become integrated into local work practices. . . .

Rather, experimentation over time results in the emergence of a complex
constellation of locally-tailored applications and repositories, combined with
pockets of local knowledge and expertise. They begin to interweave them-
selves with elements of the formal infrastructure to create a unique and
evolving hybrid. This evolution is facilitated by those elements of the formal
structure which support the redefinition of local roles and the emergence of
communities of practice around the intersection of specific technologies and
types of problems. (Star and Ruhleder, 1996, p. 132)

Along these lines, I am suggesting that we regard XP as a “unique and evolving
hybrid”. It introduces some formal structures and processes which redefine
local roles, generate locally tailored applications, repositories, knowledges and
expertises. The core of my argument is the XP gains traction to the extent that it
manages to ‘re-embody’ individual programming practices as a process of collabo-
ration and organisation of software development. The term ‘re-embody’ is slightly
awkward, but it avoids talking about XP as an abstract or general methodology.

FROM CARDS TO CODE 93

It emphasises, moreover, that much of the appeal of XP is predicated on quite
mundane practices. These practices affect the notoriously complicated workplace
relations between programmers and those who regard managing programmers as
something like ‘herding cats’.

1.1. WHY ANOTHER ETHNOGRAPHY FOCUSED ON SOFTWARE

DEVELOPMENT?

In the worlds of software development, extreme programming has recently begun
to make a name for itself. XP conferences, websites, how-to books and articles,
list-groups and local user-groups have established themselves over the last few
years and continue to expand rapidly at the time of writing (see http://www.
xprogramming.com/index.htm). Most articles and books either provide a formal,
somewhat idealised account of XP as a software development process, or closely
reflect the personal experience of participants or proponents (e.g Beck, 2000;
Wake, 2001). Furthermore, most of these documents are tutelary: they contain
injunctions, descriptions and discussions in lesser or greater detail of how to do XP.
The current interest in XP needs to be set against a background of several decades
of work on software development methodologies and software engineering.

The name XP, Extreme Programming, suggests a twist here. The very name
suggests that XP is not a software engineering methodology but something focused
on programming. Now from the standpoint of software engineering, programming
has long been a problem-laden activity. As Paul Quintas has observed, ‘software
engineering is an oppositional concept which is contingent on the identifica-
tion of conventional development processes that are regarded as unsatisfactory’
(Quintas, 1996, p. 90). Programming stands right in the middle of these unsatis-
factory processes because it too often relies on ad hoc craft practices. Beginning
with seminal texts such as Frederick Brooks The Mythical Man Month (Brooks,
1975), various attempts have been made to remedy programming practices.
Various organisational, management, documenting and designing techniques were
suggested by Brooks. During the 1980s, CASE tools and other formal modelling
techniques were used. In the 1990s, object-oriented languages and software
engineering methodologies such as the Rational Process and Unified Modelling
Language (UML) continued to address the persistent problems of programming.
In evaluating XP, we should be aware that by promoting programming as a core
activity and using it as guiding metaphor, XP explicitly lays down a challenge to
the project of software engineering as a discipline (in both senses of the word).

1.2. WHAT WILL IT LOOK AT?

When this study began, software development on Deskartes Universal was well
underway at KMS plc, a software production house located in Manchester Science
Park, UK. A small somewhat fluctuating team of software developers, testers and

94 ADRIAN MACKENZIE & SIMON MONK

managers (6–12 people) were working on ‘Universal’, as the developers called it, a
knowledge management system. The fieldwork phase of the study involved visiting
KMS 2–3 times a week for 3 months, watching pair-programming, team meetings,
reading code repository logs, code and design documents. Many interactions were
audio-taped and transcribed.

Described in basic terms, KMS’ Universal system aims to help organisations
access the knowledge embedded in documents by organising documents within
a heavily keyworded, cross-referenced repository which can process and “learn”
from natural language search queries. In addition, the system sets up ways of
capturing “expert” replies to common queries. Once captured in Universal, knowl-
edge becomes accessible through natural language queries typed into forms in
a web browser. At the centre of Universal lies neural network technology that
processes documents and queries. It brings up relevant information more directly
than most standard search engines. According to KMS promotional materials
(brochures and website), Universal could be important to call-centres, help-desks
or wherever in organisations the same questions are asked repeatedly in endlessly
slightly different variations. In implementation terms, the important attributes of
this system for our purposes include its heavy reliance on Java, html and some
Javascript as programming/scripting languages, its use of a distributed component-
based architecture (Enterprise Javabeans running on an application server) and its
reliance on standard web-browser software as a user interface. As we will see, these
features of the development environment impinge fairly strongly on the day-to-day
work of the development team. At the same time, like many other software devel-
opment projects at the time of writing, by using Java and the Enterprise Javabeans
framework, KMS was hoping to sidestep many of the configuration management
issues that have long dogged software development teams as they sought to keep
their software running on a range of different platforms (Grint, 1997).

This was the first time XP had been tried at KMS. For that reason, XP at
KMS was very definitely a ‘unique, evolving hybrid’ rather than a fully developed
organisational application of a method. Significantly, however, the leader of the
developer team, PL, mentioned early on that code quality in a previous outsourced
implementation of Universal had been so poor that a new Universal team had
to begin again almost from scratch. (A long printout of some of the worst code
from the outsourced project had been stuck to the wall in the developer’s area.)
Symptomatically, the outsourced work had explicitly relied on a fairly up-to-date
modelling technique, the Unified Modelling Language, UML. KMS had produced
a full set of specifications in the form of UML diagrams (showing the architecture
of the software and the planned sequence of operations). Yet programmers working
on another continent (India) had interpreted those diagrams differently. They had,
as PL pointed out, ‘reverse-engineered’ the diagrams to produce a system that
met some of KMS expectations but not others. In at least a general sense, the
move to XP, driven by the interest and keenness of two main individuals (PL and

FROM CARDS TO CODE 95

SM), and helped by the relatively small team-size, was yet another response to the
less-than-ideal behaviour of programmers.

One effect of the move to XP was immediately obvious in the layout of the
developer’s suite at KMS. Most of the developers sat facing inwards around tables
pushed into one large rectangle in the centre of the room. As usual, computer
monitors, laptops, PalmPilots, telephones, Coke bottles, snack food, network
cables and the odd book (Dilbert cartoons, or Martin Fowler’s Refactoring) lay
scattered over the tables. Somewhat unusually, there were no cubicles or parti-
tions, and developers sat alongside each other so that two people looked onto
one keyboard and screen (in order to carry out pair-programming; see discussion
below). Occasionally, usually after saying “flag’s up”, a developer went around
to the end of the table to use a computer placed there. That computer carried the
words “Build Machine” written with a marker pen on a piece of paper stuck to
it. At other times, they went to a noticeboard covered with cardboard cards of
three different colours – blue, orange and pink – and added or took down cards.
Sometimes, a developer also sat outside this large communal table at a work station
off to one side. Against a back wall, large bookcases held several hundred computer
books, manuals and periodicals. In one corner of the room near the entrance, in
a glass-walled office, S, the project manager worked. Further away, just outside
the entrance to the developer’s area, the software testers work area was situated.
Also near the entrance, a small meeting room almost filled by a large table, chairs
and a whiteboard was frequently occupied by developer’s “stand-up meetings” or
planning meetings.

Some of these features (the snack food, the mobile phones and handhelds,
the thick semi-popular computer press “how-to” books) are found in any soft-
ware development team. Many others – the “build machine,” at the end of the
rectangular table, the noticeboard with coloured cards, the chairs pushed together,
and the large central cluster of tables – are specific features of XP implementing
recommendations of official XP manuals. Others again – the separate testers area
– are local KMS adaptations and hybrids. How is the environment at KMS a
‘complex constellation of locally tailored applications, pockets of knowledge and
repositories? What is the relation between this ‘constellation’ and the emphasis that
XP puts on programming?

2. When the cards are down: Extreme Programming as a game of software
development

2.1. “PROGRAMMING ITSELF” (WITH JUST A FEW SMALL THINGS ADDED)

More than one copy of books written by Kent Beck (2000) can be found lying
around KMS, and different members of the team told me that they have read them.
PL, the project coach, recommended reading them to me at the end of my first
visit. As (Boden, 1994) points out, we have to acknowledge that actors in organisa-
tions account for their own actions partly in terms of theories of organisation and

96 ADRIAN MACKENZIE & SIMON MONK

management found in such books, so let’s start with the “official” account of XP
written by Kent Beck.

Beck proposes that the best way of understanding XP lies in the metaphor of
programming. In a slightly paradoxical statement, he writes:

XP uses the metaphor of programming for its activities-that is, everything
you do looks in some way like programming: Programming in XP is like
programming with a few small things added, like automated testing. However,
like all the rest of XP, XP development is deceptively simple. All the pieces are
simple enough to explain, but executing them is hard. (Beck, 2000, p. 97)

Why does he say “XP uses the metaphor of programming”? How can software
projects be re-organised by taking the programming as a metaphor? Programming
as a metaphor for programming? To decode this statement, we need to be
aware that software engineering has introduced many activities that do not “look
like programming”. For instance, structured software design methods “normally
involves producing graphical system models and results in large amounts of docu-
mentation” (Sommerville, 2001, p. 58), which then has to be maintained by
someone. The irony here, and perhaps this irony lies behind the name ‘XP’, is
that XP bases its organisational and management practices on the metaphor of bare
programming. This is the very activity that conventional software engineering sees
as the root of problems, essentially because it can be an arcane and somewhat
uncontrolled craft activity.

Software engineering tries to treat the problem through the documenting
and modelling processes. Yet design documentation, as other ethnographies of
engineering have shown, creates trouble for engineering projects in general because
it does not look like software development:

[W]ithin the particular work-a-day world of engineers efforts are made to
upgrade the production of documentation in order to ensure that it is built into
the engineer’s work. Upgrading the work is a general device that is used to
ensure that “dirty work” gets done and within software engineering there are a
number of such upgrading devices that are used in this respect. (Sharrock and
Button, 1996, p. 382)

We could see the popularity of software engineering methods such as Rational
Unified Process as just such ‘upgrading devices’ Making “use cases” as in
the Rational Unified Process, or drawing class diagrams using UML (Unified
Modelling Language) for instance, might not look much like programming to
programmers focused on writing lines of program code, compiling them, running
them, and then debugging code. KMS’ previous attempt to build Universal
(discussed above) was based on just such an upgrading: they produced the UML
diagrams which programmers in India were meant to implement in code, saving
costs on programmers in UK. When Beck says that “XP uses the metaphor of
programming for its activities”, we read him as saying that XP takes the iterative
cycle of writing, compiling and running code as a metaphor for the whole process

FROM CARDS TO CODE 97

of software development not just for “cutting code.” Arguably, XP reasserts the
core value of programming on the grounds that programmers necessarily embody
the practice of cycling through coding, compiling and running code at a fairly
basic level. Their competence, craft skills and even identity as programmers rests
on inhabiting that process. XP seeks to extrapolate from this implicit embodied
practice to a more explicit software development process.

Many formal software development methodologies tend to place coding as just
one step on a multi-stepped waterfall or a multi-looped spiral process. During more
conventional software engineering processes, the phases of risk analysis, develop-
ment of a statement of requirements, prototyping, simulations, development plans,
requirement validation, etc. remain discrete and precede the final steps of coding,
unit testing and acceptance testing (Sommerville, 2001, p. 54). Of course, nearly
all software design methods practically involve shuttling back and forth to revise
earlier design decisions and adjust the specifications in the light of changed circum-
stances. The spiral model makes these revisions and adjustments explicit. Yet the
overall emphasis of software engineering has been to downplay programming as an
activity and code as an artefact. This might be one sense in which XP is “extreme”.
It diverges from this vision of central, hiearchically controlled engineering process.
In XP, every part of the designing and building of the system is oriented by both
the metaphors and practices of coding. Hence the evaluative question which lies
at the heart of this paper and that has, we would suggest, implications for many
day to day practices in the software production would be: what actually happens
when people turn away from the models and process of software engineering to
focus on programming? Do their projects lose traction? Do problems of design
integrity or excessive ‘thrashing’ of communication that Brooks and many others
have addressed for the last 30 years return with a vengeance?

2.2. CARD AND NOTICE BOARD, CODE AND SCREEN

Coloured cards on a table and some cards pinned on a noticeboard were the first
things we saw at KMS that had anything to do with XP. Again the irony cannot
be ignored: a team building a system that would permit organisation knowledge
to be extracted and effectively outsourced to call centres was itself working with
pieces of cardboard in an intensely collaborative environment. If we wanted to
evaluate the reassertion of programming as core activity, it might be useful to track
the movements of these cards at KMS. As per Beck’s specification, the cards at
KMS came in three varieties – orange for “stories”, blue for “tasks” and pink for
“defects”. An implicit hierarchy and work processes has already been coded into
the colour of these cards. An orange story card will, in principle, have been written
by a “customer” or user of the system; a blue task card will have been written
by a developer, and a defect card either by a system tester or user. Usually the
different kinds of cards were kept apart. In the following weeks, we saw cards filled
out, shuffled, dealt out, handed in, “spawned” (as in “let’s spawn a card for that”),

98 ADRIAN MACKENZIE & SIMON MONK

displayed, swapped, counted, stored, taken back, written on, and put away. The
cards circulated constantly through different members of the team, were visible in
different places, and used for different purposes.

Why resort to something as archaic as index cards? It seems like a very trivial
thing to bring cards into play as a way of steering software development. Surely,
compared to the sophisticated project management and design tools available to
software developers, these very old-fashioned looking index cards would be rela-
tively clumsy, inflexible and limiting? The cards are printed on stiff paper as fairly
simple forms with no more than 10 lines of texts in the main description field.
Often, the card will only have one line of writing on it (e.g. “to load security level
frame for current result”) as well as a date, a story, task or defect number, and
space for brief details about completion times and dates. The simplicity and limited
capacity of these cards to carry information should give us pause for thought.

Cards lay on tables alone and in packs. Cards were pinned to the board in rows
and sometimes in envelopes. People walked to and from the board, pinning cards
on it and taking them off it. Individual cards lay beside developers workstations.
On her desk, SA, the “tracker” copied numbers and dates from stacks of cards into
a spreadsheet. A printout appeared each week on the noticeboard as a summary
of project progress. The production, distribution and consumption of these cards
threaded through much of the work of the Universal team. During their work,
which at this stage we too are still tracking as a kind of card game, we could
ask: how do the cards move around? What propels them from meeting table to
noticeboard, from noticeboard to developer table, from developer table back to
noticeboard, from noticeboard to tracker’s desk, etc.?

It is well-known that during card-games, packs of playing cards can intensely
focus the attention of card players. Like playing cards, XP cards carry different
values. Intense focus and concentration on the values of cards can be seen amongst
the KMS software developers at times. Like most card games also, these cards will
be shuffled and dealt in rounds (see discussion below of the “release”, “iteration”
and “task” loops). They circulated through different hands playing different roles:
customer, developer, “tracker” (the person who keeps track of the rate at which the
team works), and tester. The different colours immediately differentiate some of
the major kinds of work done in XP. Writing an orange story card on the table in
the meeting room represents a relatively potent act. A story card, usually because
it involves a substantial number of subsidiary tasks, will be the object of close
scrutiny. Moreover, because it crosses the boundaries between the development
team and the outside world, story cards call for careful evaluation. They cannot be
tossed around lightly because of the large amount of time and work potentially
involved in turning a story written by the customer into a working part of the
software.

FROM CARDS TO CODE 99

2.3. CARDS DO NOT GO QUIETLY

It would be impossible to document all the ways in which people move cards
around. However this movement has a few common, salient features. Importantly,
the cards do not flow automatically. The cards do not move silently. Talking steers
the movement of cards. What kinds of talk? Questions, comments, argument,
instructions, and directions all surround the movement of cards. Unlike playing
cards whose value is fixed by rules of the game, the value of a story is open to
negotiation. The “points estimated” field in the bottom corner of this card will
reflect in a very condensed form a whole series of judgments, evaluation, estima-
tions and guesses performed by the software developers during a planning meeting.
The weight of a story card, how much it is worth will be worked out by the
developers through a complex set of negotiations. At KMS, the story cards are read
to the developers during a planning meeting. Afterwards, the tasks composing the
story need to be written out. For instance, at the start of a planning meeting, PL, the
XP “coach” writes the stories for discussion on the whiteboard. Only after several
hours of fairly intense discussion can the field “Points Estimated” in the lower right
hand field of a story card be filled in with a figure like “4.0G”. This simple figure
summed up hours of talk about how the story could be implemented as a set of
tasks. Developers draw cards from stacks of blanks (especially blue task cards),
write on them and pile them up again in substantial new stacks. A story undergoes
translation into tasks through spoken interactions between different members of
the team. The following conversation explores fairly tentatively how this transla-
tion could occur, and what work it will involve. The coach, PL, stands near the
whiteboard and points to a line a writing:

PL: This is the nasty controversial one. [Laughter]. Alright, the detailed
selection tags that we’ve got from there [pointing at another story on the white-
board]. Now what we kind of figured is that tags will be some fairly ordinary
tags from the JSP page [Java Server Pages, a part of the webserver infrastruc-
ture used to construct the web-browser interface to Universal], we’ll probably
have some scripts that trigger things going on. So, you’re probably going to be
doing a bit of reuse in both cases. And this reuse might actually now be direct
reuse with the exception that this tag [pointing at a list on the board] you don’t
want to pre-populate.
R: Sorry, I missed something. Umm, the reuse of tags thing is going to actually
be quite small isn’t it?
PL: Yeah
R: It’s the JSP page that may well have to be working out how it works again?
PL: Well, you should be able to make the code easily using any code that’s
lying around.
R: A quarter for each one then.

This is the first mention of actual programming work we have seen. The gist of
the code talk with which this transcript beings concerned whether the task involves

100 ADRIAN MACKENZIE & SIMON MONK

new code or reuse of old code. The last line of the transcript seems rather abrupt
and unrelated, but in fact it was where the whole exchange (and many others like
it) was heading. “A quarter for each one” means a quarter of an “ideal developer
days work” for each task. So the exchange between PL and R, two experienced
developers, arrived at a numerical estimate for the amount of coding work involved.
That value was then be written on the top right hand corner of a blue card. R, in fact,
immediately reached across the table and began writing on some blue cards. At the
same time, all the other developers in the meeting heard how this particular piece
of work could be carried out. References to and recollections of other code already
written for previous tasks forms an important component of the dialogue. Hence,
the same exchange both brought new cards into circulation, and at the same time,
the future programming work associated with those cards had been announced
within the team. A possible path for the card to move had been laid down, and
an allocation of time has been agreed upon (as represented in the score). Later
that month, when a developer goes to the noticeboard and takes that task card,
her work will be ‘scaffolded’ by the talk that surrounded the card’s creation. The
consequences of that act of taking on a task by getting hold of the card will have
been anticipated and collectively estimated.

Standing back a little from the table talk that surrounds card play, we could
view the cards as kinds of lightweight signs which mark the outcome of very
mobile, flexible dialogical interactions occurring in planning meetings or during
conversations around the work-stations. Talk around the table crystallises in the
point estimations, the new task cards, and the brief notes written on the cards.
At the same time, the constellation composed of developers and cards has been
somewhat restructured. Their collective order has been slightly changed and the
material environment has taken on a slightly more complicated texture through the
introduction of another simple artefact, a task card. Thereafter, cards circulate as
tokens or indexical signs of that structuring of both the team and possibly Universal
itself dialogically achieved in the meeting. Problems, unanticipated difficulties and
implications will nearly always emerge, but at least their advent will be buffered
by the collective understanding of the task already developed in the group.

Developers wrote cards, collected them, handed them round and swapped them.
Despite the the primacy given to programming as both metaphor and core activity,
the XP card game is an important way to generate coding talk. To say that it is a
‘little thing’ as Beck does may be to downplay its importance. The point-estimation
work focuses that talk on just what kind of coding work is involved, something that
programmers are sensitive too. Talk surrounding the creation of cards and cards
will often give rise to much more talk, especially around the developer’s work table.
But other relations and responsibilities were also attached to cards. In particular,
holding a task card usually meant working on that task for anywhere between a
few hours and a few days, and translating the brief written synopsis on the card
into some code. What does that work of translation look like? Is XP at KMS really
just a matter of talking about building software by handing around cards?

FROM CARDS TO CODE 101

3. Writing code: nested loops or ‘harmful gotos’?

The Universal project faced familiar problems. Frequent staffing changes, down-
sizing of some parts of the company, corporate mergers with other software
development companies, shifts in management direction, local aftershocks of
the dot-com crash earlier in the year, and technical problems in developing and
supporting a (distributed) system all affected the project. How does XP, with its
looping process, help the team cope with this kind of environment? If conventional
software engineering presumes some kind of stability in the organisation setting
(otherwise the whole process breaks down), does XP cope with dot-com style
turbulence any better?

The focus of software design methods rests on making work predictable in rela-
tion to timing, and ordering work-processes so that their timing and outcomes can
be measured and steered. A mixture of different technical, social and organisational
problems tend to thwart predictions and resist steering, and these have been the
subject of much analysis by software engineers. XP explicitly regards problems
in timing and prediction as normal rather than exceptional. The subtitle of (Beck,
2000) is Embrace Change. In what ways does it embrace change? Is this subtitle
about changing software development methods or about a software development
method adapted to change?

Like other engineering methods, XP divides work into phases or stages. Like
the spiral model of software design, the stages run in loops. However, XP protects
itself against unpredictability by planning work in relatively small nested loop
structures (‘iterations’, ‘releases’) and by downplaying the central planning and
design framework advocated by Brooks (Brooks, 1975, p. 79) and reflected in
many subsequent approaches to software engineering. In principle, XP retains
flexibility to rapidly initiate different moves in relation to changing circumstances
by reducing the scale of its plans. Each level of nested loop takes into account
different kinds of unpredictability, runs over different time scales and makes use of
different ways of organising communication within the developer team. XP seeks
to organise the gamut of software development in loops or iterations of different
durations:

Loop name Duration Activities

Release 2–6 months Release planning meetings – writing “stories”,

estimating stories

Iteration 1–4 weeks Iteration planning meetings

Task/debugging 1–4 days Stand-up meetings, task allocation

Writing unit tests and 1–2 hours Pair programming, writing test cases and code

program code

Unlike the spiral model, the loops do not get wider as the system moves into
production. Their “radius” remains constant. The loops of the spiral model

102 ADRIAN MACKENZIE & SIMON MONK

(Boehm, 1988) and XP also differ in that already in its first release loop XP
promises to put the system into service in the “real world” and maintain it there.
Beck writes:

The ideal XP project goes through a short initial development phase, followed
by years of simultaneous production support and refinement. (Beck, 2000,
p. 131)

The “iterations” that occur over the months observed at KMS were specifically
marked by certain kinds of planning meetings in which difficulties and problems
were voiced in discussion and conversation. (Importantly, some difficulties the
project encountered were not the subject of planning meetings. XP still anticip-
ates certain kinds of problems and not others). These included meetings planning
the next release, meetings planning the next iteration, and stand-up meetings for
day-to-day problems. As periodisations of work, the loops were, generally, nested
inside each other, so that release planning meetings occurred least frequently (every
month or so), followed by iteration planning meetings (every week or so) and
finally, most often, stand-up meetings (every 2–3 days, but sometimes more often).
Most of the time, developers at their workstations were working within that lowest
level “loop” , and their cycles through the loop were marked by cards being pinned
to and taken down from the noticeboards. Task cards on the board would be taken
by developers. When they were completed, they would be put into a “ready to
be tested” envelope and tested by the testing team. Periodically, SA, the project
manager and XP “Tracker” (Beck, p. 144), collected all the completed cards and
copied the completion dates and other details into the spreadsheet she used to keep
track of the “project velocity.” These calculations were used to estimate the amount
of work that the team could do in the next iteration of the release. A printout of the
spreadsheet itself was usually pinned to the noticeboard.

This rule-governed work, of course, did not go totally according to plan, partly
because this was the first time KMS had tried XP development. Acceptance tests,
for instance, rather than coming near the end of a project, should come at the end
of the first release, and this first release will occur a few months into the project,
not years. The question of who would write the acceptance tests for Universal and
when they would be written was a slightly vexed question at KMS. In theory the
customer should be the one to write them, but at KMS the customer had not been
‘trained’ enough to do that, with the result that in one meeting, PL, the coach,
came in with a stack of printed pages which he referred as “the first acceptance
tests we have ever had.” Professional Services, the group upstairs who would have
to actually support Universal at customer sites, had complained that there were
no manuals or documents they could use to find out how to use to the system.
Rather than write those manuals, the development team was going to begin writing
acceptance tests from which Professional Services could infer what the system
should do. PL had started doing that at home the previous evening, hence the stack
of pages. While the relatively small size of KMS as an organisation meant that
this gap in documentation was not a major problem, the proposal that XP is just

FROM CARDS TO CODE 103

‘programming with a few small things added’ began to look a bit shaky at this
point. Quite a bit has to be added. Perhaps this incident corroborates Beck’s own
claim that although the components of XP are simple, holding them all together is
hard. In any case, given that KMS was trying XP for the first time on the Universal
project, we would naturally expect it to hit unexpected bumps.

4. Keeping in the loop takes work: Feedback and gauges

Leaving aside the more obvious teething difficulties such as this, we want to focus
on the question of the organisation of programming work. In this part of the
paper, we will look at five quite small incidents in which key XP practices such
as automated unit testing, pair programming, collective ownership of source code
and the continuity between production and maintenance came into contact with
local programming practices and local roles at KMS. These incidents show, we
argue, that the way XP uses programming as a metaphor for the co-ordination of
programming work has both powerful leverage and significant problems.

The feedback loops in the XP process can be seen as flowing from the metaphor
of programming as an activity involving constant feedback between writing,
compiling and testing code. It could also be seen as drawing on the role of loops
as central code constructs which control the flow of data in programs. Almost
every software developer would be conscious at some level of the role of loops in
programs. Hence basing a software development process on loops could have quite
a strong appeal. Yet almost any project management technique involves constant
monitoring of how actual progress compares to schedule. Is feedback actually
accomplished in XP in ways that differ from the somewhat hierarchical adminis-
trative approaches found in many conventional software engineering projects? How
do the KMS team maintain the periodicity of these loops? Kent Beck suggests that
after programming steering is the other major metaphor for XP:

[S]oftware development is like steering, not like getting the car pointed straight
down the road. Our job as programmers is to give the customer a steering wheel
and give them feedback about exactly where we are on the road. (Beck, p. 28)

Again, the implicit contrast here runs between hands-on work (programming or
steering) and more distant or detached forms of control (managing, pointing). It
is also interesting that in this formulation, feedback is given to the ‘customer’
rather than the programmers themselves. As we have already seen, XP explicitly
responds to the idea of constant change, but the question of how XP deals with
change still needs to be addressed. “Everything in software changes” Beck writes
(p. 28) and for that reason, founds XP on a set of core values (“communica-
tion”, “simplicity”, “feedback” and “courage”). Let’s leave aside the question of
values and look at the practices that organise work within loops. These include
“the planning game”, frequent small releases, metaphor, simple design, testing,
refactoring, pair programming, collective code ownership, continuous integration,

104 ADRIAN MACKENZIE & SIMON MONK

40-hour week, on-site customer, and coding standards (Beck, p. 54). How does
these practices ‘give the customer a steering wheel’? More importantly, in what
ways do they alter the kinds of control and communication within and around
software development?

Specific practices regulate coding work done at KMS. While we cannot examine
the implementation of all the practices in this discussion, we can look at some of
the loops that provide feedback, and see whether they differ from other common
programming practices. A number of crucial elements of the workings of the KMS
team converge on units tests. The team collectively “owns” the source code for
Universal. Anyone can modify any part of the code. But source code created
or modified during the course of a task (the smallest chunk of work done by a
programming pair – see discussion below) can only be committed into the team’s
source code repository when all the unit tests for both that code and the rest of
the application run cleanly. Other groupwork software development environments
impose stricter controls over who can change code and when they can change
it. For instance, IBM’s Visual Age development environment relies on notions of
privileges, code ownership and publication permissions to control code editing.
The use of a source code repository such as CVS (Concurrent Versioning System)
stands at the core of XP since it allows constant and untrammelled sharing and
modification of code.

While the use of source repositories is very common, and needless to say, almost
indispensable to programming teams, XP adds to that practice a rule specifying that
only code that has passed all the unit tests can go into the repository. An XP team
collectively accepts that their work is founded on correctly written and functioning
unit tests. The unit tests exist as Java code and they themselves are written by
developers and shared via the CVS. The test code is deeply embedded in the source
code for Universal rather than standing apart from it. Rules concerning unit tests
counterbalance the complete freedom of access to code. Developers commit code
to the repository only on the condition that all the unit tests have succeeded. The
use of unit tests (that is, tests that verify the behaviour of some relatively small
chunk of the code) allows melding of changes to the shared code to occur rela-
tively uneventfully. Without a way of melding changes to code, group ownership of
source code and scripts would become unworkable. Conversely, without commonly
shared code, the idea of writing unit tests that must run fully before declaring any
task finished would be meaningless.

When they retrieve code from the CVS repository, the KMS developers assume
that it will pass all existing unit tests. As a first step, they often run all the existing
tests to see that the code passes them. They check out the latest source code
from the CVS repository, compile it and then see if all existing unit tests succeed.
Completion of their own task (as written on a blue task card) consists in developing
some new unit tests and some new code that passes those unit tests. The tests and
the code will then be put back into the code repository. KMS use a simple piece of
software, JUnit, to automatically run the tests.

FROM CARDS TO CODE 105

Figure 1. JUnit test runner.

In JUnit, a solid green line shows a completely successful set of tests. A
red line means some test has failed. The KMS developers follow the practice of
never putting program code into the CVS repository (maintained on a dedicated
computer at the end of the developers’ table) without having first obtained the green
light from JUnit. While seeing that green line does not guarantee that they have
completed their own task as required (since they may not have written adequate unit
tests for their own code), it does allow them to gauge that the code they changed
does not “break” any existing tests.

The JUnit window shows something else important. Developers nearly always
work on a localised part of software project. At KMS, developers work on different
parts of the system, and rarely on the system as a whole. (Only the semi-automated
work of building a release of Universal could be said to involve the whole system.)
Yet their work nearly always impinges on other parts of the system under devel-
opment. Rather than just testing their own code, they run all the tests written to
date by the team to ensure that hidden conflicts between their changes and other
parts of the system become visible as early as possible. Running all the tests before
committing code constitutes an important feature of their daily, even hourly, work.
It means that system integration problems which might otherwise only appear late
in the development cycles appear early and often. The practice of “testing” merges
here with continuous integration. As (Latour, 1996) writes: “[b]y accumulating
little solidities, little durabilities, little resistances, the project ends up gradually

106 ADRIAN MACKENZIE & SIMON MONK

becoming somewhat more real” (Latour, 1996, pp. 45-46). The focus on unit tests
tries to sidestep the usual problems of testing. Brooks, for instance, writes how
regression testing is a theoretical ideal that can only be approximated in practice
and is very costly (Brooks, 1975, p. 122).

4.1. PAIR PROGRAMMING: TALKING CODE INTO EXISTENCE

Stating the central importance of programming to the XP model, Kent Beck writes:
“At the end of the day, there has to be a program. So, I nominate coding as the one
activity we know we can’t do without” (Beck, 2000, p. 44). Given the centrality of
coding to software development, the XP question is: how to code? Yet what counts
as ‘coding’ is open to contest. We have just seen something of that in relation to the
rules about writing and running unit tests. Writing unit tests as part of developing
code is hardly a universal accepted part of everyday coding practice. If XP indeed
manages to convince KMS programmers to write the unit tests before they even
write code for Universal itself, the activity of coding will have undergone consid-
erable changes. Unit testing works against the unexpected side effects of ongoing
code changes. It also allows production and maintenance to go on simultaneously,
at least in principle. (Again, this departs from most other software engineering
methods that split production and maintenance into different phases.) The green or
red line on JUnit shows pretty quickly if existing tests have been broken by newly
added code. But running JUnit obviously assumes the existence of some code, and
it presumes that code has been written so that it passes all other unit tests. Here
again, the modest claim of ‘programming with a few small things added’ begins to
look a little understated. Actually, coding according to these rules involves quite a
lot of organisation and negotiation.

A second change touchs on the question of who does coding. XP plays down
myths of heroic individual coding efforts carried out by taciturn headphone-
cocooned programmers buzzing along on a constant intake of “Jolt” Pepsi. It
replaces the myth with an unusual organisation of programming work in pairs,
or as pair programming. For most programmers, pair programming could well
be the most startling feature of XP. It seems to require an abdication of coding
autonomy and its connotations of individual creativity and expression. At KMS,
almost all work on Universal was being done in pairs. The pairs changed daily.
Occasionally, a team member would work alone away from the group at a work
station in the corner of the developer’s suite, but not on coding. (The two members
of the team doing acceptance testing almost always worked alone.) Even the hard-
ware installed in the developer’s area reflected a commitment to pair programming.
Development work was done on laptop computers connected via a laptop dock to
an external monitor. Various programming practices had to be accommodated in
the pairing of programmers together. Although some pairs might have formed more
frequently than others, a good deal of mixing and swapping of partners occurred.
Sometimes laptops moved around between pairs. Some developers seemed to keep

FROM CARDS TO CODE 107

a closer hold on a particular development machine than others. One developer, D,
for instance, installed a complete Linux development environment on his machine,
including the substantial application server and web-server components needed to
run Universal.

The amount of talking that pair programming generates is surprising. Usually
programming and software development is not described as a talking activity. Let’s
follow some of the talking that occur during a typical pair programming session at
KMS. Here SM and m (a relatively new member of the team) have formed a pair
to deal with a defect. They take the card labelled “Template.java defect” from the
board where a tester, MA, has pinned it and move to a machine. This machine has
a single screen which they both look at. SM sits at the keyboard. As a first step,
SM runs the unit tests.

SM: Right, let’s just see how far we go with this and then go back.
M: So there’s no specific place for running the system?

The green line comes up on JUnit.

SM: . . . Ah, there we go.
SM: This is the version that should have everything substituted into it.
M: Right, so is that the form of the tag that the template [yeah]?
SM: [Taking a piece of scrap paper and writing on it] What happens is that you
have a template file with most JSP pages, and in that file it has all the variable
bits delimited by underscores. So that by the time it gets rendered into html, all
the underscore something or rather underscore should have been converted into
something real.
. . .

SM: The way they substitute URL is . . . [looks for another piece of paper]
here it is. Now, this is all right, this is a ready drawn piece of paper. Before
. . . Right, so you have a template, you do [writing] ‘t = new Template’. And
you give it a string full of ordinary text, with things delimited by markers that
are going to substituted. That creates your template. You then do a whole load
of sets. . . . You then do String results = t.value. t.value() which is the method
we’ve changed, is the thing that actually substitutes all the underscore thingy-
ma-jigs underscore into actual values.
Right, that’s not a problem at all if you do it the way we used to do it, which
is that you go through the hashtable of things that you’re going to substitute.
Because when you do one of these, it basically puts it in a hashtable. We way we
used to do it is that you’d go through the hashtable looking for underscore name
underscore. When you found it, you do a global . . . Sorry, when you found it,
you’d go to the hashtable, iterate over all the keys, for each of the keys, you’d
go and look in here and do a global search and replace on underscore name
underscore for Vladimir. With me?
M: No
SM: [Laughs]

108 ADRIAN MACKENZIE & SIMON MONK

We could follow this interaction further as SM explained to M the underpinnings
of the defect they’ve taken responsibility for. In this case the dialogue unfolded
as a kind of lesson. SM and M sat at the computer but they did not actually write
code for the program. Code fragments were written on a piece of paper as SM
explained a part of Universal’s workings to M. No working code comes from that,
but M begins to understand how code could be written to deal with the defect.
Understandings of the system design, how it works and how it can be made to work
differently often passed between pairs rather than through written documentation.
But how did code get written? A great deal of it was written without comment,
but frequently the developers had to speak with each in order to understand what
happened or should happen in some part of Universal. In the following snippet, a
pair (NA and SM) tried to explain some anomalous database behaviour:

1. NA: So you think it’s throwing an exception and the “finally” [refers to a
particular line in the program code] is not executing for some reason.

2. PL: Finally always executes.
3. SM: Even when Jbuilder [NA: JUnit?] JUnit is . . .

4. PL: What?
5. SM: is polling the . . .

6. PL: Yeah, “finally” always executes.
7. NA: I don’t think JUnit has some magical control over this.
8. PL: No.
9. NA: Yeah, it’s just a classloader. When it invokes a method, it probably just

does it in a “try” and a “catch.” And if you don’t throw it up, you don’t ever
see it, right?

10. SM: Doesn’t it give you a bit more of a [performance]?
11. NA: I don’t think it’s going back to the old database for whatever reason.
12. SM: Well it must be.
13. NA: After the second run.
14. SM: It must be something we’ve done.
15. NA: Oooh
16. SM: It must be!
17. NA: Go ahead, try it.
18. PL: Do you want a stand-up?

Several interesting strands of pair programming as a practice intersect in this
example. SM and NA are discussing why a particular set of unit tests fail. As we
have seen, success with unit tests usually means completion of a programming task.
In this exchange, they struggle to decide whether the cause of the test failures lies
with the database or whether the problem stems from the way JUnit runs the tests.
At this point, PL, an experienced developer, weights into the exchange and directly
asserts that a certain Java code construct can only work in one way: “finally always
executes” (line 2, line 6). NA argues that JUnit does nothing “magical” or hidden
from their understanding of the situation. SM thinks that JUnit does do something

FROM CARDS TO CODE 109

they don’t understand. Hence, they are compelled to tak about how Junit actually
works. This is why a few lines into the exchange, the discussion moves back into a
more basic question about how Java code executes (line 9).

Having agreed on basic questions about Java, they return to the question of
the database’s involvement. This allows NA then to advance his interpretation of
JUnit’s behaviour, and in particular to reinforce the point that JUnit cannot be
responsible for the current problem. In response, SM moves to a slightly different
and less specific position. He suggests that the problem must “be something we’ve
done.” NA does not accept this move and in turn suggests that they no longer talk
about what happens but try it out in practice. PL, for his part, goes in the opposite
direction. He switches roles slightly also at this point into XP “coach” mode, and
asks, “do you want a stand-up?” In other words, he proposes escalating the problem
into an impromptu but slightly formalised general discussion amongst the whole
development team. (As it turns out, SM and NA did not want that. They resolve the
problem by running some code.)

Apart from PL’s role in prompting them about a ‘stand-up’, little in these
incidents reflects anything specific to XP. What they do suggest, however is that
the pair-programming arrangement increases the chances that problems or diffi-
culties will quickly become an object of collective attention and discussion. It was
uncommon at KMS for such discussions to go unnoticed by other developers. Often
they would join in.

4.2. MOVING DISTANT HORIZONS CLOSER

As well as installing gauges such as JUnit to show that looping conditions have
been met, and wrapping coding in conversation, XP also removes some important
thresholds and stages that other software development processes highlight. System
integration, an important step in waterfall and spiral models, really does not figure
as a discrete step in XP. That particular source of uncertainty felt by all soft-
ware development teams on the day they first put all the sub-systems together
disappears. The question “will the system hang together?” doesn’t loom large
because the continuous integration entailed in writing and running unit tests has
pre-empted it.

It would be wrong to imagine that the idea of continuous integration works
effortlessly. Many small incidents at KMS show the difficulties in translating that
idea into practice:

I: What was the issue then with ST?
SM: Just saw something that surprised us when we updated our files.
I: Local copy?
SM: Yes. We’ve got a builder script, and ST changed the way that it works so
that it actually changes the date of the files. It actually touches the files.
I: And that meant that you weren’t sure whether you had the latest
version?

110 ADRIAN MACKENZIE & SIMON MONK

SM: Well, it meant we weren’t sure whether we should check them in or
whether we should leave them alone.

This incident concerns how continuous system integration actually occurs. SM
and NA had made some changes to the code, run the tests, seen JUnit go green
and were ready to place their work in the shared CVS repository. They go to the
CVS machine at the end of developer’s shared table. Just as they are poised to
commit their changes, the WinCVS program shows some files with red icons. They
expected to see them all white. That would have reassured them that nothing needs
to be done to them. (Again the WinCVS program serves as a sort of gauge, this
time on the state of the repository.) Red icons mean the files have been modified but
not committed or finally checked in by someone else. If ST and NA commit their
work now they might overwrite changes recently made by someone else. Instead a
conversation ensues in which SM asks ST to help him interprets this anomaly in the
continuous integration. It turns out that from now on, certain classes of files (those
“touched” by the “builder script”) will always look as they have been changed
when in fact they haven’t really.

The cost of continuous system integration includes complicated negotiations
between members of the development and the development of shared, contingent
interpretations of what “gauges” mean. In this case, from now on, red icons on
certain selected build files in the CVS repository probably only mean that the
build script has been run. They can be safely ignored. Two points emerge from this
incident. Firstly, the proximity of developers to each other around a shared table
does not arise just from a commitment to the shared “values” of communication or
feedback. Without the possibility of quickly constructing verbal agreement on what
those icons meant, SM and NA’s work would be on hold. They could not commit
their changes to the code repository without risking overwriting someone else’s
work. Secondly, removing a major stumbling threshold such as the conventional
system integration phase means re-distributing all the configuration work needed
to integrate the system throughout the duration of the project. Instead of “big bang”
integration, XP promotes “steady-state” expansion of the system.

4.3. “WE’RE IN SET-UP HELL”: CONFIGURATION WORK IN XP

Inevitably some work on Universal fell outside the planned XP loops. Sometimes
the gauges failed. Sometimes iterations were not fully complete before company
priorities changed. For instance, one morning we arrived to find three developers
at work configuring a different version of Universal (the “Corp X. Branch”) as
a demonstration installation for two customers. This configuration task was not
scheduled on any of the task cards which normally describe work to be done on the
project.

SA tells us that they need to have the demonstration ready by lunchtime. It is
now just after 10 A.M. Around the main table, normal activity was buzzing. But
the three developers seated along one side of the table (R, D, & B) were troubled

FROM CARDS TO CODE 111

by the failure of the database configuration scripts to work. They need to run these
scripts to create tables in a relational database. R decides to find ask the whole team
about it:

R: Eh, [shouting], can I just get your attention for a moment.
[Some talk continues]
R. and G as well: . . . [all talk stops] We’re running the Corp X. branch at
the moment. So it’s the older version. And we’re having problems with the
database stuff. It’s, it’s not right. Can anyone think of the reasons why if we get
the latest database creation scripts, all the schema and other stuff, if anything
has changed that could cause any issues?
SM: [from the other side of the table] – Yes.
R: It has?
SM: There’s all the security stuff that’s gone in there [describes “Entity beans”
columns]
R: No, no. If you’re adding columns it’s ok, its only trying to use columns
that exist. But it’s whether things have changed . . . SM: I’m not sure if that’s
completely true. I don’t understand. You shouldn’t be having a problem anyway
. . . PL: Is the problem still just the Problem table?
R: No, we’re having a RollBackException in EJBException in insert Trigger-
OnCommunityTable
PL: insert TriggerOnCommunityTable. . .?
SM: Did you run the whole thing? I thought you were just going to cut out the
bit with the rollback table.
R: No, we just ran the whole thing.
SM: Right, you needed just the Problem table.
ST: I’ve run the whole scripts last week
SM: The new scripts?
ST: No, for the Corp X.
PL: But SM said his script’s on the main branch.
R: Oh. Right.
ST: I don’t understand why you were on the new branch.
R: No, it doesn’t matter.

At this point, R turns back to the computer (a laptop connected to an external
monitor), starts up a WinCVS program and retrieves the database scripts from a
different section of the CVS repository, the Corp X. branch. Everyone else returns
to their own work and conversations. What happens in this fairly typical episode?
How did R, D & B come to be apparently using the wrong database script? What
does this kind of episode say about the ideal work-process of nested loops outlined
in the XP how-to manuals?

The place of configuration-work remains unclear in XP. The three developers
happened to be working on a configuration task. This is regarded as isolated
or exceptional work in XP: on a previous occasion, weeks earlier, working on
this same branch, and trying to get it working with an upgraded version of the

112 ADRIAN MACKENZIE & SIMON MONK

BEA WebLogic Application Server, SM, working with B, says somewhat despair-
ingly, “we’re in set-up hell.” In other words, configuration work has no official
place in XP, partly because it can’t be very easily estimated using task cards and
partly because it can’t be easily unit tested. Although there may be information
‘configuration gurus’ in the KMS team (one team-member, ST, for instance, knows
a lot about setting up and configuring the Weblogic commercial application server
on which Universal runs), none of the loops, gauges or dialogical forms that
XP promotes explicitly address configuration. Configuration-work or “set-up hell”
incessantly troubles software systems, as well as many other technical practices.
Here it interrupts for a few hours the nested-loops of the XP software development
process. Forcing a jump outside the nested-loops of task, iteration and release,
setting up a demonstration installation of the system consumes a lot of energy. Like
a harmful “goto” statement, configuration-work can end up in tangles. If we regard
configuration work not as some unlucky accident that befalls software development
from the outside, but as part of the normal course of events, what does this episode,
whose resolution we have yet to see, show us? In some respects, XP attempts to
minimise configuration work by maintaining a common source code, a full and
automated set of unit tests, and, less clearly, a set of configuration information (such
as database scripts) consistent with the source code. However, while the common
source code and fully running unit tests eliminate some configuration problems,
other configuration-work remains unavoidable. We could ask: what place does the
work the developers were doing that morning have in the XP process?

4.4. THE PROBLEM OF THE DOPPELGÄNGER: SIMULTANEOUS VERSIONS

The work of the three developers this morning lies on a branch different to that of
the main team to a certain extent. They have not chosen to do go out on a limb
like that. Their planned work, as described by the task cards, has been shunted
onto the branch by a management directive. A possible customer for the Universal
system has been promised a demonstration by midday. The problems they have in
configuring the system stem from an exit outside the planned XP loops. Whereas
XP predicates the release of a succession of versions, it does not envisage working
on different versions at the same time. The ”Corp X. branch“ is a slightly different
version of the system existing and being developed at the same time as the main
branch. It has not come into existence just this morning. It has been in existence
for weeks now.

Again, we can ask how XP handles this quite legitimate and common need
to have different versions of the same system in development at the same time.
Sometime later, R still struggling to get the system up and running, asks PL:

R: PL,
PL: Hello
R: Is there any chance in getting everything working last week for us on this
machine that either you or ST (who isn’t here at the moment)

FROM CARDS TO CODE 113

SA: [project manager, arriving to stand behind the developer’s] ST’s there.
R: could have updated anything on our machine, the Java source on our
machine, about that Urgency [a feature of Universal that allows queries to be
prioritised as urgent] or the notification.
PL: No. Ah, we didn’t actually have anything to do with what you were doing
the whole week.
R: There’s going to come a point, right, where, well, we’ve not even applied it
yet. We’ve got differences on our machine, different to the Corp X. branch in
CVS. And we’ve not made those changes.
PL: On the Java code?
R: On the Java code. And we’ve not made those changes.
PL: [to ST] did you change any code on R’s machine?
ST: Did I change any code on his machine?
R: Last week, when you were getting stuff working, about Urgency
PL: He couldn’t have done it on Friday because he was at Corp X.
R: On any day.
ST: I wouldn’t have done anything on your machine anyway.
R: It’s not, I’m not pointing a finger or anything. BR was doing stuff directly
on my machine. He might have changed the Java code.
ST: I wouldn’t change it. Well no, it wasn’t me.
R: [pause, then to D & B, who are sitting by]: I mean, worst case scenario is
it all works and we commit what I’ve got on my machine into that branch of
Corp X.
PL: But the whole question remains of how it got changed.
R: Well more, why and what else has been changed that we don’t know about
that we’re going to commit into CVS.
PL: Did you do a commit Friday?
R: I’ve not done a commit or anything with the Java stuff. The Java stuff has
worked fine.

A bit later, after the developers look through some more files on their machine, this
episode continues:

. . .

R: We’ve just done a diff between what’s on my machine and what’s on the
Corp X. branch, and there’s differences.
SA: Well they should be exactly the same.
R: I’ve only seen a difference on the Query EDA
ST: I, I recut that. [Pause] I changed the Query entity and committed that on
Thursday. I made changes to get it to work with the Corp X. branch.
D: That’s it!
R: Right, cool. So we’re just reading CVS wrong. Which is beautiful. It makes
perfect sense. All we’ve got to do then . . . in fact, we can just do “get latest”.
3 September 2001

114 ADRIAN MACKENZIE & SIMON MONK

In this second scene, more people have been drawn into the incident. Now rather
than three developers (already one more than the usual programming pair found in
XP), 5 or 6 people have become involved, including the project manager, the team-
leader and other developers. The XP-set-up of the workspace, with nearly all the
developers seated around one large oblong table, facilitates that involvement. Again
talk, driven by a problem elicits memories, recollections, and alternative under-
standings of the configuration of the development set-up (CVS) which eventually
allow a configuration problem to be resolved.

5. Conclusions

At the beginning of this paper we asked: could software development become
‘extreme’ in the sense popularised in extreme sports? More specifically, is
programming the extreme activity in XP? Several striking features of XP emerging
from this study show that in practice, reducing software development to an
‘extreme’ in this sense is problematic and laden with irony.

Firstly, as the discussion of the card game suggested, XP involves a lot more
than programming. The card games knit together in a rule-governed process a
very disparate set of work processes and relations involving management, ‘the
customer’ or client and all the members of the software development team. All
these parties participate in software development. At least to a certain extent,
the game spans the usual boundaries between project managers and software
developers. It shifts a great deal of the project management work over to the
programmers themselves. The cards simply and effectively contrive to specifiy and
keep track of work done by different participants in the Universal project. They also
act as lightweight, mobile tags that index shared understandings of what Universal
will do, how it will do it and when it will do it. Without these cards, the nested
loop structure through which XP work was organised at KMS could not have been
maintained. Gaining possession of, swapping and signing off on cards represented
visible markers of progress and allowed almost immediate visual inspection of
collective work progress.

Secondly, as the discussion of the various programming incidents suggest,
programming work or coding becomes central to XP only against a background
history of trials with other software development methods. The emphasis on
programming as core activity and as metaphor for all other activities has a some-
what ambivalent status. On the one hand, by treating all organisational activities
on the model of programming (loops, cycles), XP rhetorically repackages project
management in ways that are already familiar and perhaps more palatable to
programmers. In this sense, it re-embodies programming work as a way of doing
project management. On the other hand, the injunctions to do unit testing, pair
programming and accept collective ownership of the source code entail substan-
tial changes in the day-to-day work practices of programmers. Again, doing
‘programming with only a few small things added’ is not so simple in practice.

FROM CARDS TO CODE 115

These practices, as some of the incidents show, trigger new kinds of collaborative
problems for which local work-arounds and customizations continually need to be
negotiated.

The artifices used to co-ordinate the work of software development in XP –
unit tests, card games, code repository – directly address the problems of co-
ordinating work against an unstable background of economic and organisational
change.1 Something as simple as a set of cards, or a small piece of software such
as JUnit can create irreducibly new and unique forms of activity when they manage
to combine and synthesise different facets of organisational life and work process
effectively. Yet it is tempting to say that the card games, the co-location of the team,
writing unit tests, pair-programming and collective ownership of the source code
are all strategems that intensify the collaborative work of programming at the cost
of a somewhat closed relation to outside the team. While the ‘customer’ officially
belonged to the team, in KMS’ case, he was rarely in the developer’s area.

The metaphor of programming grafts effectively into software development
processes because it plays on familiar, embodied practices of programming and
pits them against more conventional central and hierarchical methods of soft-
ware engineering. It draws on the fairly indisputable necessity of programming
to propose an explicitly minimal and hands-on approach to software development.
The stress on the core value of programming or coding has to be seen against
the background of overt attempts to engineer the craft-processes of coding and
manage them from above. This rhetorical move on the part of XP has important
consequences for how we think about co-operative activities more generally.
(Suchman and Trigg, 1996), in an analysis of how AI researchers used whiteboards,
suggested that

like any product of skilled practice, the formalism inscribed on the board
leaves behind the logic of its own production and use, seen here as collabo-
rative craftwork of hands, eyes, and signs. But analyses of situated practice . . .

point to the contingencies of practical action on which logic-in-use, including
the production and use of scenarios and formalisms, inevitably and in every
instance relies. In this way such analyses provide an alternative to idealized
(sic) formulations of reasoning as disembodied mental operation. (Suchman
and Trigg, 1996, p. 173)

In their study, Suchman and Trigg wanted to effectively counter-balance the
abstract models of mental operation predominant in AI research with the concrete,
localised and embodied practices of AI researchers. Through their analysis of craft-
work, they sought to render visible the “dark matter” of AI research, especially
as it transpires in the course of conversations and whiteboard writing. Coming
from a completely different motivation, XP does something similar for software
development. Rather than leaving ‘behind the logic of its own production and use’,
XP effectively turns the craftwork of hands, eyes, keys, screen and signs into the
basis of an effective formalism.

116 ADRIAN MACKENZIE & SIMON MONK

A final word on XP as an extreme activity: as we have seen, XP orients soft-
ware development projects to a metaphor of “programming plus a few small things
added.” The few small things include the cards games and talk, the unit testing and
code sharing practices, and pair programming. In fact, these are hardly small things.
Like the SAAB advertisement I mentioned at the outset, an element of irony plays
out in the metaphor of “extreme”. Like extreme sports, software development and
many other collaborative activities do face relatively unstable and risky environ-
ments. XP explicitly tackles the “risk” in software development not by armouring
itself with heavy formalisms. As we saw in the nested loops, it addresses the ques-
tion of how to bring a flexible organisation of time into centre stage in software
development. At the same time, as the “set-up hell” episode illustrates, and as
the SAAB ads show in their own way, engineering projects including software
development projects do not deal solely or even principally with physical, natural
or even technical risks. Some things can never be anticipated.

Note

1. In an article that sought to move CSCW debates around interaction between humans and artefacts
in new directions, Marc Berg wrote: ‘What I am after . . . is how distributed and interrelated
entities can create new forms of activity, irreducible to and spanning over the actions of isolated
elements’ (Berg, 1999, p. 376). Extreme Programming, I would argue, constitutes an illumi-
nating instance for the development of this line of “relational” investigation. XP involves highly
collaborative activity. It insists strongly on the value of co-location, effectively in the space of a
single room.

References

Anderson, R. and Sharrock, Wes (1993): Can Organisations Afford Knowledge? Computer
Supported Cooperative Work (CSCW), vol. 1, pp. 143–161.

Auer, Ken and Roy Miller (2001): Extreme Programming Applied. Addison-Wesley Publishers Ltd.
Bannon, Liam and Susanne Bodker(1997): Constructing Common Information Spaces. In J.A.

Hughes, W. Prinz, T. Rodden and K. Schmidt (eds.): Proceedings of the Fifth European Confer-
ence on Computer Supported Cooperative Work. Dordrecht: Kluwer Academic Publishers.

Beck, Kent (2000): Extreme Programming Explained. Embrace Change. Addison-Wesley Publishers
Ltd.

Berg, Marc (1999): Accumulating and Coordinating: Occasions for Information Technologies in
Medical Work. Computer Supported Cooperative Work, vol. 8, pp. 373–401.

Brooks, Frederick P. (1975): The Mythical Man-Month. Essays on Software Engineering. Reading,
MA: Addison-Wesley Publishing Company.

Button, Graham and Wes Sharrock (1996): Project Work: The Organisation of Collaborative Design
and Development in Software Engineering. Computer Supported Cooperative Work: The Journal
of Collaborative Computing, vol. 5, pp. 369–386.

Clark, Andy (1997): Being There. Putting Brain, Body, and World Together Again. Cambridge, MA:
MIT Press.

Curtis, Bill, Herb Krasner and Neil Iscoe (1988): A Field Study of the Software Design Process for
Large Systems. Communications of the ACM (November), vol. 31, no. 11, pp. 1268–1287.

FROM CARDS TO CODE 117

Grint, Rebecca A. (1997): Doing Software Development: Occasions for Automation and Formal-
isation. In J.A. Hughes, W. Prinz, T. Rodden and K. Schmidt (eds.): ESCW97 Proceedings of
the Fifth Conference on Computer Supported Cooperative Work. Dordrecht: Kluwer Academic
Publishers.

Latour, Bruno (1996): Aramis, or the Love of Technology, C. Porter (trans.). Cambridge, MA:
Harvard University Press.

Lynch, Michael (1993): Scientific Practice and Ordinary Action: Ethnomethodology and Social
Studies of Science. Cambridge: Cambridge University Press.

Ó Riain, Seán (2000): Working for a Living Irish Software Developers in the Global Workplace. In
M. Burawoy (ed.): Global Ethnography Forces, Connections, and Imaginations in a Postmodern
World. Berkeley and Los Angeles: University of California Press.

Quintas, Paul (1996): Software by Design. In R. Mansell and R. Sliverstone (eds.): Communica-
tion by Design: the Politics of Information and Communication Technologies. Oxford: Oxford
University Press, pp. 75–102.

Sommerville, lan (2001): Software Engineering (6th edn.). Harlow: Pearson Education & Addison
Wesley.

Star, Susan Leigh and Karen Ruhleder (1996): Steps Toward an Ecology of Infrastructure: Design and
Access for Large Information Spaces. Information Systems Research (March), vol. 7.1, pp. 111–
134.

Succi, Giancarlo and Michele Marchesi (2001): Extreme Programming Examined. Addison-Wesley
Publishers Ltd.

Suchman, Lucy A. and Randall H. Trigg (1996): Artificial Intelligence as Craftwork. In Under-
standing Practice: Perspectives on activity and context. Cambridge: Cambridge University
Press.

Wake, William C. (2001): Extreme Programming Explored. Addison-Wesley Publishers Ltd.

