
DAVC19 Software Engineering Karlstad University

Unified Process Document Version Control System

Design Model 1.0

August 16, 2004

1 Deployment Model

As you can see in Figure 1 there is a server Odin on which the server part of the program is running. It is also
possible that there is a client running on Odin too. For the server it makes no difference if the client is on that
machine or any other. As you can see it should be possible to connect to the server by ¿LANÀ or ¿InternetÀ.
For both ways we consider a Remote Message Invocation ¿rmiÀ for the communication. In this case we do not
think about this and think that the client and the server are running in one. This diagram only shows the way
it is going to work in the future.

Figure 1: Deployment Diagram

2 Class Model

Figure 2: Package Diagram

2.1 Client Package

Class Admin_UI

1

DAVC19 Software Engineering Karlstad University

Figure 3: Client Class Diagram

package: client

client.UI

|

+-client.Admin_UI

public class Admin_UI

Extends:

client.UI

This class is the interface for the Admin. Here the Admin can perform all of

his activities.

Field Detail

sid

private int sid

This attribute is the session ID which is generated during the login procedure.

The ID is transmitted to the server with every request.

Constructor Detail

Admin_UI

public Admin_UI(int sid)

This operation is the constructor of the Admin_UI class.

Stereotype:

2

DAVC19 Software Engineering Karlstad University

constructor

Method Detail

changePassword

public void changePassword(String username, String newpassword)

This operation changes a password of an existing account.

mod_Visibility:

$public

mod__returnType:

void

changeWorkerrole

public void changeWorkerrole(String username, Vector newroles)

This operation changes workerroles in an existing account.

mod_Visibility:

$public

mod__returnType:

void

createUser

public void createUser(String username, String password, Vector workerrole)

This operation is used to start the create user process.

There for it needs a username, a password, and the workerroles of the user who

is going to be created.

mod_Visibility:

$public

mod__returnType:

void

deleteUser

public void deleteUser(String username)

This operation starts the delete user process.

It needs the username of the user, who is going to be deleted.

mod_Visibility:

$public

mod__returnType:

void

3

DAVC19 Software Engineering Karlstad University

initGUI

private void initGUI(int sid)

This operation initializes the Admin interface.

It is called by the constructor.

mod__returnType:

void

mod_Visibility:

$private

Class CodeHelper

package: client

public class CodeHelper

The Server returns always a code.

This class translates the int return value into the appropriate message.

Constructor Detail

CodeHelper

public CodeHelper()

Stereotype:

constructor

Method Detail

getCode

protected String getCode(int var)

This operation is called by the UI_Manager class and returns the appropriate

message as a String.

Class HashHelper

package: client

public class HashHelper

The password is transferred as a Hash.

Because of this the UI_Manager class asks this HashHelper to generate the Hash

from the entered password.

Constructor Detail

HashHelper

public HashHelper()

4

DAVC19 Software Engineering Karlstad University

Stereotype:

constructor

Method Detail

gethash

protected String gethash(String password)

This operation returns a hash from a given string.

mod__static

mod_Visibility:

$protected

mod__returnType:

String

Class Login_UI

package: client

client.UI

|

+-client.Login_UI

public class Login_UI

Extends:

client.UI

This class represents the login interface of the software.

If you are or a Worker or a Admin you need to login yourself over this interface.

Constructor Detail

Login_UI

public Login_UI()

This is the constructor of the Login_UI class.

Stereotype:

constructor

Method Detail

enterLogindata

public void enterLogindata(String username, String password)

This operation is called after the user enters his logindata.

This operation starts the login process.

5

DAVC19 Software Engineering Karlstad University

mod_Visibility:

$public

mod__returnType:

void

initGUI

private void initGUI()

This operation initializes the interface.

mod__returnType:

void

mod_Visibility:

$private

logout

public void logout()

This operation overrides the operation which is inherited by the implemented UI class.

This is caused by the fact, that the login interface needs no possibility to logout.

This function starts the shutdown process on the client.

mod__returnType:

void

Class UI

package: client

public abstract class UI

This class is the basis for all user interfaces.

It provides the basic functions.

mod__abstract

Field Detail

uimRef

private UI_Manager uimRef

This reference is to the manager of the client package.

It is used to call the requested operations.

Method Detail

display

protected void display(String whattodisplay)

6

DAVC19 Software Engineering Karlstad University

This operation displays any String message on an interface.

mod_Visibility:

$protected

mod__returnType:

void

logout

public void logout()

This operation calls the logout procedure.

It is used by all user interfaces.

mod_Visibility:

$public

mod__returnType:

void

Class UI_Manager

package: client

public class UI_Manager

This class is the manager of the client package.

It calls the server when needed and knows when to start which user interface.

Field Detail

codeRef

private CodeHelper codeRef

This attribute is a reference to the CodeHelper class of this client.

hashRef

private HashHelper hashRef

This attribute is a reference to the HashHelper class of this client.

serverRef

private static Server serverRef

This attribute is the reference to the server.

uiRef

private UI uiRef

7

DAVC19 Software Engineering Karlstad University

This attribute is a reference to the actual user interface.

Method Detail

changePassword

protected void changePassword(String username, String newpassword, int sid)

This is one of two change password operations.

This one is called by the admin ui.

It needs the username of the account where the password is going to be changed,

the new password and the admin’s sid. The password will be hashed before it

will be transmitted.

mod_Visibility:

$protected

mod__returnType:

void

changePassword

protected void changePassword(String newpassword, int sid)

This is one of two change password functions.

This one is called by the worker ui.

It only needs the new password and the sid.

The password will be hashed before it will be transmitted.

mod_Visibility:

$protected

mod__returnType:

void

changeWorkerrole

protected void changeWorkerrole(String username, Vector newroles, int sid)

This operation is called from the user interface.

It performs the rolechange of all role from one worker.

At the end of the process the display operation of the user interface will be called

and an appropriate message will be shown.

mod__returnType:

void

mod_Visibility:

$protected

createUser

protected void createUser(String username, String password, Vector workerrole, int sid)

This operation is called by the user interface and performs a create user process.

At the end of the process the display operation of the user interface will be called

8

DAVC19 Software Engineering Karlstad University

and an appropriate message will be shown.

mod__returnType:

void

mod_Visibility:

$protected

deleteUser

protected void deleteUser(String username, int sid)

This operation is called by the user interface and performs a delete user

process. At the end of the process the display operation of the user interface

will be called and an appropriate message will be shown.

mod__returnType:

void

mod_Visibility:

$protected

login

protected void login(String username, String password)

This operation performs the login request. It hashes the password and calls

the server.

mod_Visibility:

$protected

mod__returnType:

void

logout

protected void logout(int sid)

This operation calls the server and shuts down the worker or admin ui and starts

the login ui.

mod__returnType:

void

mod_Visibility:

$protected

main

public static void main()

This is the main function which starts the client.

mod__static

mod__returnType:

9

DAVC19 Software Engineering Karlstad University

void

shutdown

protected void shutdown()

this function shuts the client down.

mod__returnType:

void

mod_Visibility:

$protected

Class Worker_UI

package: client

client.UI

|

+-client.Worker_UI

public class Worker_UI

Extends:

client.UI

This class is the interface for the Worker. Here the Worker can perform all of

his activities.

Author:

Christian

Field Detail

sid

private int sid

This attribute is the session ID which is generated during the login procedure

and is transferred with every request to the server.

Constructor Detail

Worker_UI

public Worker_UI(int sid)

This constructor starts the initGUI() operation.

Stereotype:

constructor

Method Detail

changePassword

10

DAVC19 Software Engineering Karlstad University

public void changePassword(String newpassword)

This operation allows the Worker to change his password.

mod_Visibility:

$public

mod__returnType:

void

initGUI

private void initGUI(int sid)

This operation initializes the Worker interface. It also sets the sid.

mod__returnType:

void

mod_Visibility:

$private

2.2 Server Package

Figure 4: Server Class Diagram

Class Account

package: server

public class Account

11

DAVC19 Software Engineering Karlstad University

Implements:

java.io.Serializable

This is the Account class. For every valid user the system has one Account instance.

Field Detail

passwordhash

private String passwordhash

This is the passwordhash, which belongs to the user.

sid

private int sid

This is the sid. This field is only used, if the user is logged into the system.

If the user is not logged in the value is null

username

private String username

workerrole

private Vector workerrole

Constructor Detail

Account

public Account(String username, String passwordhash, Vector workerrole, int sid)

Stereotype:

constructor

Method Detail

retPasswordhash

protected String retPasswordhash()

This operation returns the Passwordhash to the caller.

retSid

protected int retSid()

This operation returns the Sid stored in the Account.

12

DAVC19 Software Engineering Karlstad University

retUsername

protected String retUsername()

This operation returns the Username to the caller.

retWorkerrole

protected Vector retWorkerrole()

This operation returns the Workerroles to the caller.

updPasswordhash

protected void updPasswordhash(String passwordhash)

updSid

protected void updSid(int sid)

This operation sets a sid to the Account.

updWorkerrole

protected void updWorkerrole(Vector workerrole)

This operation sets a new Workerroles to the Account.

Class AccountManager

package: server

public class AccountManager

Implements:

java.io.Serializable

This AccountManager is managing the Accounts. Therefore it has a vector of

references to the Accounts.

Field Detail

accountRefs

private static Vector accountRefs

This is a vector which contains all references to valid Accounts.

instance

private static AccountManager instance = null

Because the Account Manager is a Singleton it has a reference to him.

13

DAVC19 Software Engineering Karlstad University

lnkAccount

private Account lnkAccount

smRef

private SessionManager smRef

This is a reference to the SessionManager class, because in some cases it can

happen, that the AccountManager needs one of the functionalities of the

SessionManager.

Constructor Detail

AccountManager

public AccountManager()

Stereotype:

constructor

Method Detail

createAccount

protected void createAccount(String username, String passwordhash, Vector workerrole, int sid)

This operation is called to create a new account. At first it checks if

the account does exist at all and if the account does not exist the function

calls the constructor of the account class. The sid value is set to null at

the creation.

deleteAccount

protected void deleteAccount(String username)

This operation is called whenever any class wants to delete an existing account.

At first it searches for the account and after that it checks if the account is

active at the moment. If the account is active it deletes the account but before

it calls the SessionManager to delete the Session of the user.

findAccountByAid

protected Account findAccountByAid(String username)

This operation returns a reference to an Account.

It finds the wanted Account by the give username.

retInstance

protected static AccountManager retInstance()

14

DAVC19 Software Engineering Karlstad University

Whenever any class needs a reference of this class this operation is called.

It returns a reference of the existing object.

Class AdminRequestHandler

package: server

server.RequestHandler

|

+-server.AdminRequestHandler

public class AdminRequestHandler

Extends:

server.RequestHandler

This class performs all requests regarding the admin. It is a realization of

the UseCase manage account.

Constructor Detail

AdminRequestHandler

public AdminRequestHandler()

Stereotype:

constructor

Method Detail

changePasswordhash

protected int changePasswordhash(String username, String newpasswordhash, int sid)

This operation performs the change password request. At first it checks if the

requesting user is the admin. When this is done it asks the AccountManager for

the Account and modifies the password. At the end it returns an info code to

the calling class.

changeWorkerrole

protected int changeWorkerrole(String username, Vector newroles, int sid)

createUser

protected int createUser(String username, String passwordhash, Vector workerrole, int sid)

This operation performs the create user request. Like with all requests it checks first;

if the requesting user is the admin. After this it asks the AccountManager to create

a new Account. At the end it returns an info message.

deleteUser

protected int deleteUser(String username, int sid)

15

DAVC19 Software Engineering Karlstad University

This operation performs the delete user request. At first it checks if the

requesting user is the admin. After that it asks the AccountManager to delete

an Account.

Class RequestHandler

package: server

public abstract class RequestHandler

This Class is the mother of all RequestHandlers. They all need a Reference to

the SessionManager, the AccountManager. And if the Managers return a type they

also need a possibility to handle the returned Account or Session.

Field Detail

amRef

private AccountManager amRef

This is a reference to the AccountManager

aRef

private Account aRef

smRef

private SessionManager smRef

This

sRef

private Session sRef

Method Detail

errorfunc

protected void errorfunc(int errorcode)

This error function is called, whenever something is going wrong. It generates

an error code which will be transferred to the calling client.

Class Server

package: server

public class Server

This class is a kind of interface for the package server. Every request has to

pass this class. It decides which of the request handlers is going to process

16

DAVC19 Software Engineering Karlstad University

the incoming request.

Field Detail

arhRef

private AdminRequestHandler arhRef

This attribute is a reference to the AdminRequestHandler.

srhRef

private SessionRequestHandler srhRef

This attribute is a reference to the SessionRequestHandler.

wrhRef

private WorkerRequestHandler wrhRef

This attribute is a reference to the WorkerRequestHandler.

Method Detail

changePasswordhash

public int changePasswordhash(String username, String newpasswordhash, int sid)

This is an overloaded operation with which the admin can change a user’s password.

This will be directed to the AdminRequestHandler.

changePasswordhash

public int changePasswordhash(String newpasswordhash, int sid)

This is an overloaded operation, with which a worker can change his password.

This will be directed to the WorkerRequestHandler.

changeWorkerrole

public int changeWorkerrole(String username, Vector newroles, int sid)

This changeWorker() call will be directed to the AdminRequestHandler.

createUser

public int createUser(String username, String passwordhash, Vector workerrole, int sid)

The incoming call createUser() will be directed to the AdminRequestHandler.

deleteUser

17

DAVC19 Software Engineering Karlstad University

public int deleteUser(String username, int sid)

The incoming call deleteUser() will be directed to the AdminRequestHandler.

login

public int login(String username, String passwordhash)

This login() call will be directed to the SessionRequestHandler.

logout

public int logout(int sid)

This logout() call will be directed to the SessionRequestHandler.

main

public static void main(String argv)

This is the main function of the server. This function "starts" the server.

Class Session

package: server

public class Session

This is the Session Class. Whenever a user logs him in a session object is

created from this class. And whenever any user logs him out the session must

be destroyed.

Field Detail

aid

private String aid

This aid is another name for the username, which belongs to the session.

It is needed; if a user wants to change his password the session check returns

the aid to find his Account.

sid

private int sid

This is the sid. It is a number with which the calling user is identified in

the server.

Constructor Detail

Session

18

DAVC19 Software Engineering Karlstad University

public Session(int sid, String aid)

Stereotype:

constructor

Method Detail

retAid

protected String retAid()

This operation returns the aid to the calling user.

retSid

protected int retSid()

This operation returns the sid to the caller

Class SessionManager

package: server

public class SessionManager

This is the SessionManager. As the name says it is the class which manages the

sessions. They are stored in a collection and the manager only knows the

possibilities to find, destroy, or create a session.

Field Detail

instance

private static SessionManager instance = null

The SessionManager is a Singleton factory and because of this he has a

reference to himself.

lnkSession

private Session lnkSession

sessionRefs

private static Collection sessionRefs

This is the collection, which contains all valid sessions in the system.

Constructor Detail

SessionManager

19

DAVC19 Software Engineering Karlstad University

public SessionManager()

Stereotype:

constructor

Method Detail

createSession

protected int createSession(String username)

This operation performs a create session request. It generates a sid,

calls the constructor of the session class, and returns the sid to the caller.

deleteSession

protected String deleteSession(int sid)

This operation is called whenever a session has to be deleted.

It searches the session, asks it for the aid, and deletes the reference

from the collection that the garbage collector can delete the object.

findSessionBySid

protected Session findSessionBySid(int sid)

This operation is called when any class needs the reference to a session.

It searches the session by her sid and returns a reference.

retInstance

protected static SessionManager retInstance()

Whenever any class needs a reference of this class this operation is called.

It returns a reference of the existing object.

Class SessionRequestHandler

package: server

server.RequestHandler

|

+-server.SessionRequestHandler

public class SessionRequestHandler

Extends:

server.RequestHandler

This class gets all requests regarding to the session handling.

Constructor Detail

20

DAVC19 Software Engineering Karlstad University

SessionRequestHandler

public SessionRequestHandler()

Stereotype:

constructor

Method Detail

login

protected int login(String username, String passwordhash)

This operation gets all login calls from the users.

After the call is checks the account, compares the password, and asks

the SessionManager to create a new session objec. At the end the generated

session id is transferred to the calling class.

logout

protected int logout(int sid)

This operation gets all logout calls from the users of the system.

Then it asks the SessionManager to delete the session and after that it sets

the sid, which is stored in the account to null. At the end it transfers a

message code to the calling class.

Class WorkerRequestHandler

package: server

server.RequestHandler

|

+-server.WorkerRequestHandler

public class WorkerRequestHandler

Extends:

server.RequestHandler

This class receives all requests regarding the Worker.

Constructor Detail

WorkerRequestHandler

public WorkerRequestHandler()

Stereotype:

constructor

Method Detail

changePasswordhash

21

DAVC19 Software Engineering Karlstad University

protected int changePasswordhash(String newpasswordhash, int sid)

This operation performs the change password request from a user.

It does not check is the requesting user is the calling user.

It just changes the password in the account of the calling user, which is

identified by his sid.

3 Use-Case Realisation

In this part are all sequences shown which must be possible regarding the Use- Cases.

22

DAVC19 Software Engineering Karlstad University

Figure 5: Login Successful Sequence Diagram

23

DAVC19 Software Engineering Karlstad University

Figure 6: Logout Successful Sequence Diagram

24

DAVC19 Software Engineering Karlstad University

Figure 7: Create User Successful Sequence Diagram

25

DAVC19 Software Engineering Karlstad University

Figure 8: Create User Failed Sequence Diagram

26

DAVC19 Software Engineering Karlstad University

Figure 9: Delete User Successful Sequence Diagram

27

DAVC19 Software Engineering Karlstad University

Figure 10: Admin Change Password Successful Sequence Diagram

28

DAVC19 Software Engineering Karlstad University

Figure 11: Worker Change Password Successful Sequence Diagram

29

DAVC19 Software Engineering Karlstad University

Figure 12: Change Workerrole Successful Sequence Diagram

30

