
DAVC19 ’06

Tim Heyer

DAVC19 ’06
Software Engineering

Tim Heyer

Karlstad University

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Outline (A)

Administrative & Introduction
Staff
Structure
Web

Introduction
Horror stories
Software Engineering
History

Keywords

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Staff

I Teachers:

Tim Heyer (5A427, 700 2030)

I Course secretary:

Inger Bran (5A415, 700 1970)

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Course Structure

1. Basic facts (1 pt, level 1)

Lectures and reading the course literature (Beck & Scott)
A short written exam

2. UP and inspection exercise (1 pt, level 3)

Extending use-case, analysis and design models
Individual inspection and inspection meeting

3. Reasoning about software engineering issue (3 pts, level 6)

Justifying and criticising given statements
Two reports

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Written Exam

I 10 questions: 4 software engineering, processes and
verification & validation, 3 XP and 3 UP.

I All questions are of the type: “What is (according to the
course material and literature respectively) meant by the
term X?”

I Answer should be around 4 sentences (never more than 8).

I Each question gives 0, 1, or 2 points.

I 18 points gives a 5, 16 points a 4, and 14 points a 3.

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

More Information

http://www.cs.kau.se/cs/education/courses/davc19/
or Studenttorget

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Mariner I (Venus Explorer)

I 1962-07-22, Cape Canaveral/Florida

I Carrier rocket Fortran control program contained:

DO 5 K = 1. 3
...

5 CONTINUE

I Carrier rocket leaves flight path and destructs after 290 s

I Costs $ 18,500,000

I Dot instead of comma DO5K = 1.3

I Variable declarations not required

I No structured loops

I Blanks in names and numbers allowed

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Ariane 5 (Carrier for Satellites)

I 1996-06-04, Kourou/French Guyana
I 30 s after liftoff ground speed reaches a value 5× higher

than Ariane 4
I Unprotected float–to–integer conversion results in overflow
I Primary and secondary navigation computers shut down
I Main computer interprets diagnosis data as flight data
I Main computer sends stupid commands to thrusters
I Rocket self-destructs causing 840 million Euro damage

and 2–3 years without profits
I The erroneous part was only active after liftoff to allow

faster restart in case liftoff was aborted
I No overflow check because it was proven that overflow

could not occur with Ariane 4
I Only hardware errors were expected, thus identical

software on both navigation computers

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Mars Climate Orbiter

I Mars Climate Orbiter is feared to have burned up in the
Martian atmosphere

I Cost $ 125,000,000

I Spacecraft and navigation teams were using different
measurements units

I One team was using Imperial or English measurements
(inches, feet and pounds)

I The other team was using metric (centimetres, meters,
and kilograms)

I The spacecraft is believed to have passed only 57 km
above the surface of the planet instead of the intended
140 km

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Therac-25

I Therapeutic linear accelerator with beams of x-rays or
electrons

I 20.000 lines of code by single programmer over several
years

I People died in the 80th because of overradiation due to
software errors

I Console indicated no or to low dose administered

I Extremely poor coding style

I Showing correctness and re-creation of errors was
extremely hard

I One of the errors only occurs when radiation type was
changed late

I Good software engineering is important

I Other means are recommended though (fuse)

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

AT&T telephone system

I 1990

I 70 millions long distance calls out of 138 millions could
not be served under 9 hours

I Costs $ 75 millions at AT&T and several $ 100 millions at
customers

I Reason was software error

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

How Software Development Projects Fail

I No functioning software results

I The resulting software does not adequately address the
need of the users

I Software contains incorrect computations

I The software is too difficult to use correctly

I The system response time is too slow to be used without
frustration

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Software Engineering

IEEE Standard 610.12:

1. The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance
of software; that is, the application of engineering to
software.

2. The study of approaches as in 1.

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Why Software Engineering is not Universal

I Understanding software development as programming only
without recognition of importance of analysis and design

I Short-sighted technical management

I Poor project estimation, thus unreasonable deadlines

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

A Brief History of Software Engineering Techniques

I Structured Programming

No gotos

I Functional Decomposition

Top-down organisation of subprograms

I Structured Analysis

Recognition that analysing the problem statement has
critical influence on the success of the overall project
Formal modelling of subprogram interaction with dataflow
diagrams

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

More History of SE Techniques

I Data-centered analysis

Uses techniques developed in structured analysis
Data modelling occurs using entity relationship diagrams
before functional modelling

I Object-oriented analysis

No longer segregates the modelling of functions and data
Objects aggregate data with functions that operate on the
data

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Sample Dataflow Diagram

Read book
record

overdue books
Check for

Read Patron
record

Patron ID

True/false

Patron ID
Patron record
or null

Check out
books

status
Change book

Write book
record

Book ID, out

Book record

Book record

Book ID

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Sample Entity Relationship Diagram

Publisher

Checks
out

Requests

Book

Library
Patron Has−a

Has−a

Address

Has−a

1:M 1:M

1:1

1:1

1:1

DAVC19 ’06

Tim Heyer

Administrative
& Introduction

Staff

Structure

Web

Introduction

Horror stories

Software
Engineering

History

Keywords

Keywords

Software engineering.
DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Outline (B)

Life Cycle Models
Introduction
Models
Remarks

Keywords

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Process

I To provide a service or to develop a product a sequence of
tasks is performed

I The set of ordered tasks can be considered a process

I A process usually involves tools and techniques

I The organisation and discipline in the activities are
acknowledged to contribute to the quality and shorter
development time

I Processes that involve the creation of a product are also
referred to as life-cycles

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Software Process Models

I A software process model describes how the development
of software should progress respectively progresses

I Process models create a common understanding what
should be done

I Process models help finding inconsistencies, redundancies
etc. in the process

I Many software process models have been proposed

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Waterfall Model

Analysis

Requirements

Design

Coding

Testing

Operation &
Maintenance

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Software Development Process in Reality

Analysis
Requirements System

Design

Acceptance
Testing Testing

Unit & Integration

Coding

Program
Design

Operation &
Maintennace

System
Testing

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Waterfall Model with Prototyping

Analysis
Requirements

System
Design

Program
Design

Coding

Prototyping

Testing

Operation &
Maintenance

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

V Model

Coding

Testing
Unit & Integration

Acceptance
Testing

System
Testing

Operation &
Maintennace

System
Design

Program
Design

Analysis
Requirements

Verification

Validation

Verification

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Prototyping Model

List of
Revisions

List of
Revisions

List of
Revisions

Prototype
Requirements

Prototype
Design

Prototype
System Test

reviewrevisionreviewrevisionreviewrevision

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Operational Specification

Operational
Specification

Transformed
Specification Test

Execution and
Revision

(problem−oriented) (implementation−oriented)

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Transformational Model

Test
Formal

Specification

Transform 1

Transform 2

Transform N

Requirements
Revision w.r.t.

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Incremental/Iterative Development

Iterative Development

Developers

Users Use Release 2

Build Release 1

Use Release 3 Use Release 1

Build Release 2 Build Release 3

Incremental Development

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Spiral Model

plan
develop and test

constraints
alternatives,

determine objectives,

risk analysis2

prototype2
risk
analysis1
prototype1

prototype3
prototype4

risk analysis3

risk analysis4

budget1

const.1
altern.1budget2

alternatives2
budget3

budget4

constraints2

constraints3

constraints4

alternatives3

alternatives4

requirements and
life−cycle plan

development plan

integration and test plan

detailed designsoftware
requirements

concept of

requirements
validation

design validation
and verification

design
software

code

unit test

test
acceptanceimplementation

plan

operation

and test
integration

identify and resolve risks
evalutate alternatives,

Start

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Some Remarks

I Many more process models than the ones presented here
are in use

I As shown many activities are common to all process
models

I The focus is on technical aspects of software development

I Behavioural and organisational aspects are captured only
to a small extent

I Orthogonal model covering the latter aspects exist

DAVC19 ’06

Tim Heyer

Life Cycle
Models

Introduction

Models

Remarks

Keywords

Keywords

Process, life cycle model, maintenance, waterfall model,
incremental development, iterative development.

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Outline (C)

XP and UP
Introduction
Values, Principles, and Practices
Risk

UP
Use-Case Driven
Architecture-Centric
Iterative and Incremental
Risk
Iterations

Keywords

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

What Is XP?

Beck, first edition:

XP is a lightweight methodology for small-to-medium-sized
teams developing software in the face of vague or rapidly
changing requirements.

Beck, second edition:

XP is giving up old, ineffective technical and social habits in
favor of new ones that work; XP is fully appreciating yourself
for total effort today; XP is striving to do better tomorrow; XP
is evaluating yourself by your contribution to the team’s shared
goals; XP is asking to get some of your human needs met
through software development.

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Why Is It Named “eXtreme”?

I Reviews are good, thus code is reviewed all the time

I Testing is good, thus everybody tests all the time

I Design is good, thus everybody designs all the time

I Simplicity is good, thus design is kept as simple as
possible to support the current functionality

I Architecture is important, thus everybody defines and
refines the architecture all the time

I Integration testing is important, thus integration and
testing occurs several times a day

I Short iterations are good, thus iterations are very short

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Four Control Variables of Software Development

Cost Time Quality Scope

I External forces pick the values of any three of the variables

I Development team picks the value of the fourth variable

I External forces can not pick the values of all four variables

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

More on Scope

I Scope is the most important variable of software
development

I Managing scope gives managers and customers control
over cost, quality, and time

I Requirements are never clear at first but change through
experience

I Scope is very soft enabling shaping it more easily

I Cost, time, and quality can be kept by continually adjust
scope

I A software development discipline based on this model
would have to tolerate change easily

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Metaphor: Learning to Drive

Beck’s mom:

Driving is not about getting the car going the in the right
direction. Driving is about constantly paying attention, making
a little correction this way, a little correction that way.

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Values, Principles, and Practices

Practices Things that are actually done

Values Values determine what you do like and do not like

Principles Domain-specific guidlines for life

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

The Values of XP

I Communication

I Simplicity

I Feedback

I Courage

I Respect

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Principles

I Humanity

I Economics

I Mutual benefit

I Self-similarity

I Improvement

I Diversity

I Reflection

I Flow

I Opportunity

I Redundancy

I Failure

I Quality

I Baby steps

I Accepted responsibility

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Primary Practices

I Sit together

I Whole team

I Informative
workspace

I Energized work

I Pair programming

I Stories

I Weekly cycle

I Quarterly cycle

I Slack

I Ten-minute build

I Continuous integration

I Test-first programming

I Incremental design

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Risk in XP

Risk XP treatment

Schedule slips Short release cycles
Project canceled Customer involvement
System goes sour Comprehensive suite of Test cases
Defect rate White- and black-box testing
Business misunderstood Customer involvement
Business changes Short release cycles
False feature rich Important tasks are implemented

first
Staff turnover Higher programmer responsibility

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

What is the UP?

I The UP is a generic process framework for the
development of software

I Distinguishing aspects are that the UP is use-case driven,
architecture-centric, and iterative and incremental

I The UP uses the UML

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

The UP is Use-Case Driven

Test
model

Requirements

Use−case
model

Analysis

Analysis
model

Design

Design
model

Deployment
model

Implementation

Implementation
model

Test

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Why Use-Cases?

I To capture the value adding requirements

I To drive the process

I To devise the architecture and more

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

The UP is Architecture-Centric

I The architecture can be considered the common vision
that all workers must agree on or at least accept

I The UP is architecture-centric because it involves using
the architecture as the key to conceptualizing,
constructing, managing, and evolving the system being
built

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Why do we need an architecture?

I To understand the system

I To organize development

I To foster reuse

I To evolve the system

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

The UP is Iterative and Incremental

I The strategy is to developing a software product in small
manageable steps, i.e. you plan, specify, design,
implement, integrate, and test a little

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Why iterative and incremental?

I To mitigate risks

I To get a robust architecture

I To handle changing requirements

I To allow for tactical changes

I To achieve continuous integration

I To attain early learning

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Mitigating Risks

R
is

k
 s

e
ri
o

u
s
n

e
s
s

Time

Waterfall

Iterative, incremental

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Achieving Continuous Integration

Time

P
ro

g
re

s
s

Waterfall

Iterative, incremental

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Iterations over the Life-Cycle

Test

Implementation

Design

Analysis

Requirements

Core workflows Inception ConstructionElaboration Transition

Phases

1 2 n−1 n

Iterations

DAVC19 ’06

Tim Heyer

XP and UP

Introduction

Values,
Principles, and
Practices

Risk

UP

Use-Case Driven

Architecture-
Centric

Iterative and
Incremental

Risk

Iterations

Keywords

Keywords

Practice, value, principle, communication, simplicity, feedback,
courage, humanity, mutual benefit, self similarity, failure, baby
steps, accepted responsibility, sit together, whole team,
informative workspace, pair programming, stories, weekly cycle,
test-first programming.

Use-case driven, architecture-centric, iterative and incremental,
inception phase, elaboration phase, construction phase,
transition phase, requirement workflow, analysis workflow,
design workflow, implementation workflow, test workflow,
use-case model, analysis model, design model, deployment
model, implementation model, test model.

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Outline (D)

Verification & Validation
Introduction
Testing
Inspection
Formal Verification

Keywords

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

What Is a Major Goal of Software Development?

+
Environment

behavior

Actual

Software + Computer

behavior

Intended

Goal

Actual behavior = intended behavior (correctness)

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Components of Software Development

Intended behavior
Model of

environment

Verification

Development

Code

Specification

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

What Is Testing and Debugging?

Testing is the process of determining the existence of a
fault (typically by executing a piece of software)

Debugging is the process of finding and correcting a known
fault

Failure is the inability of a piece of software to perform
according to its specifications

Fault is a manifestation of an error in the software

Error refers to some human action that results in a
fault in the software

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Global View of the Testing Process

P Compare
Test

strategy

Oracle

P

test
results

expected
output

real
output

subset of
input

subset of
input

input

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Classification According to Adequacy Measurement

Coverage-based testing: Testing requirements based on
coverage of the artifact to be tested, e.g. certain
amount of statements, branches, paths

Fault-based testing: Testing requirements based on ability to
detect faults, e.g. fault seeding, mutation testing

Error-based testing: Testing requirements based on knowledge
of typical errors made by people, e.g. off-by-1
errors at boundary values

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Classification According to Information Source

Black-box testing: Nothing is known about the internal
structure of the code, test cases aim to represent
all possible inputs

White-box testing: Knowledge of the programming constructs
is used to determine the test cases to use, e.g
loops are tested for 0, 1, max, and max + 1
iterations, conditions are tested for true and false

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Different Test Stages

Unit testing: The units comprising a system are individually
tested

Integration testing: The composition of components is tested

System testing: The whole system is tested against user doc
and requirements spec

Acceptance testing: The whole system is tested against
customer expectations

Installation testing: If the system has become operational in a
different environment

Regression testing: Retesting elements of the system that were
tested in a previous version or release

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Examples: Testing a Correct Program

Computing n2 without multiplication:
1 + 3 + 5 + · · ·+ (2n − 1) = n2, i.e. crossing out each second
integer.

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Example: Testing an Incorrect Program

Compare two strings for equality.

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Drawbacks of Testing

Testing is a common technique to increase confidence in
program correctness, however:

I Very late in software development

I Can only show the presence of bugs, but not their absence

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

What Is Inspection?

I Inspection is the process of finding defects in the artifact
by human examination

I Artifacts can be any written document, i.e. specifications,
source code, contracts, test plans, test cases, etc.

I Inspection is usually performed by 3 to 5 participants

I Participants often have different roles or assume different
perspectives, e.g. customer, implementer, tester etc.

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

The Basic Inspection Process

Initiation and Documents
I An author gives artifacts to a moderator and asks for an

inspection
I The moderator recruits a team of inspectors and gives

them the artifact and all other necessary documents
I A kick-off meeting ensure that all participants understand

the artifact to inspect as well as their roles in the
inspection

Checking
I Inspectors individually read the artifact and note all the

defects found with the help of checklists, rules etc.
I The inspection team conducts a defect logging meeting

Completion
I The author takes the defect log and fixes all the logged

defects

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Example: Rules

General:

I All documents shall be unambiguous to the intended
readership.

I Ideas shall be stated once only in documents and
thereafter referred to by their unique tag.

Source Code:

I The code should use symbolic constants, instead of
hard-coded values, whenever possible.

I The level of commentary should match the complexity of
the code.

Requirements:

I Requirements must be stated in terms of final need, not
perceived means.

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Advantages and Disadvantages

Advantages:

I All types of artifacts can be inspected

I Applicable early in the process

I Effective

I Provides value in improving software reliability, availability,
and maintainability

Disadvantages:

I Rather informal

I Result depends much on the discipline and experience of
the involved personnel

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Hoare’s Partial Correctness Assertion Method

Code Assertions

Verification Conditions
Generation of

Formal Proof
Accept

Reject

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Example

Code and assertions:

{X =x ∧ Y =y}x :=x+y ; y :=x−y ; x :=x−y{x =Y ∧ y =X}

Verification condition:

x =X ∧y =Y ⇒ (x +y)− ((x +y)−y)=Y ∧ ((x +y)−y)=X

I Assertion: condition that program variables must satisfy

I Precondition: assertion describing properties of input

I Postcondition: assertion describing properties of output

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Advantages and Disadvantage

Advantages:

I Provides a formal proof of the correctness

I Applicable early in the development

I Supports the development of software artifacts

Disadvantages:

I Required formal rigor is often considered a major drawback

DAVC19 ’06

Tim Heyer

Verification &
Validation

Introduction

Testing

Inspection

Formal
Verification

Keywords

Keywords

Correctness, testing, debugging, failure, fault, error,
coverage-based testing, fault-based testing, error-based testing,
black box testing, white box testing, unit testing, integration
testing, acceptance testing, inspection, formal verification.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Outline (E)

UML
Introduction
Modelling
History
Diagrams and Views

Assignment
Scenario
Deliverables
Process

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

What is the Unified Modelling Language (UML)?

I A model is an abstract representation of some other thing
(which may be real)

I UML is a standardised language for specifying, visualising,
constructing, and documenting different kinds of systems,
ranging from software to organisational processes

I UML represents a collection of engineering practices that
are used for the modelling of large and complex systems

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Why to Model?

“When it comes down to it, the real point of software
development is cutting code”

“Diagrams are, after all, just pretty pictures”

“No user is going to thank you for pretty pictures; what a user
wants is software that executes”

[M. Fowler: UML Distilled, Addison Wesley, 1997]

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

We Model Because . . .

Good models are necessary for:

I Making complex systems more understandable

I Visualising the essential aspects of a system

I Communication among project members and with the
customer

I Ensuring architectural soundness

A good model is more easily manipulated and understood than
the thing it represents

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

What the UML Is Not

I It is not a method or a process, i.e. UML does not specify
how to model a system.

I It is not a tool.

I It is not a programming language, but a visual modeling
language.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

UML History

Engineering (OOSE)
Ivar Jacobson

Object−Oriented SoftwareBooch
Grady Booch

UML 1.1
Standard by the

Object Management Group (OMG)

1994

1995

1997

Today

Technique (OMT)
Jim Rumbaugh

Object Modeling

UML 0.9

Unified Method 0.8

UML 2.0

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

UML Diagram Types

I Use-case diagrams
For modeling the functionality provided by a system

I Sequence diagrams
For modeling interactions within a system (focusing on
timing)

I Collaboration diagrams
For modeling interactions within a system (focusing on the
structural organisation of the objects)

I State diagrams
For modeling the behavior of system objects

I Activity diagrams
For modeling the behavior of use-cases, objects, and
operations

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

UML Diagram Types (cont’d)

I Class diagrams
For modeling the static structure of classes

I Object diagrams
For modeling the static structure of objects

I Component diagrams
For modeling components

I Deployment diagrams
For modeling productive deployment of a system

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

UML Views

Implementation
view

Environment
view

Behavioral
view

Use−case
view

Structural
view

System

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Scenario

You recently got employed by a company that develops a
document version control system for the Unified Process. Key
elements of the tool are:

I The artifacts are stored in a central repository. The
artifacts get version numbers.

I Users log in to check in and/or check out artifacts from
the central repository.

I The system respects the users’ roles and the current
workflow.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Your Task

Specify, analyse, and design two use-cases:

I Check In: enables a worker to check in an artifact.

I End Activity; enables a worker to end a workflow (i.e., an
activity) and to start the next subsequent workflow.

Remarks:

I You should carefully consider when and who may check in
which artifacts and end which workflow.

I You may use whatever tools you want to create
documents and diagrams. For the diagrams we actually
suggest pencil and paper.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Extend the use-case model

I A use-case diagram containing the existing and new actors
and use-cases.

I Two use-case descriptions, each consisting of a brief
description, an activity diagram describing the flow of
events, a precondition, a postcondition, and special
requirements.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Extend the analysis model

I An analysis class diagram containing the existing and new
classes.

I Two analysis use-case realizations (one for each of the
above use-cases). Each use-case realization is supposed to
consist of a collaboration diagram, a description of the
event flow, and special requirements.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Extend the design model

I A design class diagram for the server package containing
the existing and new classes (omit existing attributes and
operations).

I Two design use-case realizations (one for each of the
above use-cases). Each use-case realization is supposed to
consist of a sequence diagram.

I A document briefly describing each new operation.

DAVC19 ’06

Tim Heyer

UML

Introduction

Modelling

History

Diagrams and
Views

Assignment

Scenario

Deliverables

Process

Lab Process

1. Apply for a pair on the web page.

2. Solve the assignment in that pair; make two copies of your
reports.

3. Apply for a inspection pair on the web page.

4. Meet with your inspection pair and exchange your report;
check quickly that the reports you are supposed to inspect
are acceptable.

5. Produce your individual inspection reports.

6. Sign up for an inspection meeting on the list at the
pinboard outside room 5B403.

7. Perform the inspection meeting with the teacher as
moderator. Both pairs have to be present at the meeting.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Outline (F)

Report
Introduction
Process
FAQ

References
Publications
Searching

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Assignment

You are supposed to:

1. justify one of a given set of statements and

2. criticise one statement.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Perspective A

Always

Design documentation, like class and sequence diagrams,
should always be created and kept complete and up to date.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Perspective B

Initially

Design documentation, like class and sequence diagrams,
should only be created for the initial development of the system
but should not be kept up to date later.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Perspective C

Sometimes

Design documentation, like class and sequence diagrams, may
only be created when design ideas need to be communicated
during development. The documentation should be discarded
afterwards.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Perspective D

Never

Design documentation, like class and sequence diagrams,
should never be created. Instead code should be used to
communicate design ideas during development.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Report Process

1. Choose the perspective that is closest to your own opinion.

2. Justify that perspective (5 references; 400–450 words,
excluding references, quotations and appendixes; English).

3. Apply for a partner on the web page.

4. Meet with your partner and exchange your reports.

5. Criticise the other student’s justification (5 references;
400–450 words, excluding references, quotations and
appendixes; English).

6. Hand in your reports: your own justification, your critique
of another student’s justification, and a copy of the report
you criticised.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Remarks

I Write your own argumentation individually.

I Choose the perspective that is closest to your own opinion.

I References can, e.g. be conference articles, journal papers,
white papers, books, web pages. The quality of your
references will affect your mark.

I You may include scientific papers that you do not have full
access to in your reference list, if 1) the abstracts support
your argumentation, and 2) you include the abstracts in
your report as an appendix.

I Marks are based on: language, argumentation, references,
presentation and structure.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

FAQ

I I do not really understand how the reports are supposed to
be. Where do I start?

I Can I use the XP book by Beck as a reference?

I The student who’s justification I am supposed to criticise
picked the same statement as me. What should I do? It is
difficult to criticize the other student’s justification since I
have the same opinion.

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Scientific Publications

I Journal article

I Conference article

I Reports

I Dissertations

I Books

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Databases

1. Selection

2. Indexing
Keywords, thesaurus terms et cetera.

3. Integration and distribution

DAVC19 ’06

Tim Heyer

Report

Introduction

Process

FAQ

References

Publications

Searching

Search Process

1. Preparation

2. Search

3. Results

4. Evaluation

	Lecture A
	Administrative & Introduction
	Staff
	Structure
	Web

	Introduction
	Horror stories
	Software Engineering
	History

	Keywords

	Lecture B
	Life Cycle Models
	Introduction
	Models
	Remarks

	Keywords

	Lecture C
	XP and UP
	Introduction
	Values, Principles, and Practices
	Risk

	UP
	Use-Case Driven
	Architecture-Centric
	Iterative and Incremental
	Risk
	Iterations

	Keywords

	Lecture D
	Verification & Validation
	Introduction
	Testing
	Inspection
	Formal Verification

	Keywords

	Lecture E
	UML
	Introduction
	Modelling
	History
	Diagrams and Views

	Assignment
	Scenario
	Deliverables
	Process

	Lecture F
	Report
	Introduction
	Process
	FAQ

	References
	Publications
	Searching

